Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224253592> ?p ?o ?g. }
- W4224253592 endingPage "3017" @default.
- W4224253592 startingPage "3017" @default.
- W4224253592 abstract "To improve the reliability and accuracy of a transformer fault diagnosis model based on a backpropagation (BP) neural network, this study proposed an enhanced distributed parallel firefly algorithm based on the Taguchi method (EDPFA). First, a distributed parallel firefly algorithm (DPFA) was implemented and then the Taguchi method was used to enhance the original communication strategies in the DPFA. Second, to verify the performance of the EDPFA, this study compared the EDPFA with the firefly algorithm (FA) and DPFA under the test suite of Congress on Evolutionary Computation 2013 (CEC2013). Finally, the proposed EDPFA was applied to a transformer fault diagnosis model by training the initial parameters of the BP neural network. The experimental results showed that: (1) The Taguchi method effectively enhanced the performance of EDPFA. Compared with FA and DPFA, the proposed EDPFA had a faster convergence speed and better solution quality. (2) The proposed EDPFA improved the accuracy of transformer fault diagnosis based on the BP neural network (up to 11.11%)." @default.
- W4224253592 created "2022-04-26" @default.
- W4224253592 creator A5022405069 @default.
- W4224253592 creator A5042249431 @default.
- W4224253592 creator A5056608289 @default.
- W4224253592 creator A5074104734 @default.
- W4224253592 creator A5082668462 @default.
- W4224253592 date "2022-04-20" @default.
- W4224253592 modified "2023-09-27" @default.
- W4224253592 title "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis" @default.
- W4224253592 cites W1786686177 @default.
- W4224253592 cites W1964484746 @default.
- W4224253592 cites W1967268052 @default.
- W4224253592 cites W1973571177 @default.
- W4224253592 cites W1973997930 @default.
- W4224253592 cites W2001979953 @default.
- W4224253592 cites W2007864618 @default.
- W4224253592 cites W2028193856 @default.
- W4224253592 cites W2029243982 @default.
- W4224253592 cites W2035405290 @default.
- W4224253592 cites W2082759946 @default.
- W4224253592 cites W2093209484 @default.
- W4224253592 cites W2104464861 @default.
- W4224253592 cites W2134890699 @default.
- W4224253592 cites W2140417752 @default.
- W4224253592 cites W2218627854 @default.
- W4224253592 cites W2280750608 @default.
- W4224253592 cites W2290883490 @default.
- W4224253592 cites W2528285056 @default.
- W4224253592 cites W2571530646 @default.
- W4224253592 cites W2793735142 @default.
- W4224253592 cites W2921063114 @default.
- W4224253592 cites W2954924379 @default.
- W4224253592 cites W2966521753 @default.
- W4224253592 cites W3005272614 @default.
- W4224253592 cites W3006097138 @default.
- W4224253592 cites W3006548976 @default.
- W4224253592 cites W3098924781 @default.
- W4224253592 cites W3118566532 @default.
- W4224253592 cites W3133242753 @default.
- W4224253592 cites W3156052521 @default.
- W4224253592 cites W3156118547 @default.
- W4224253592 cites W3163540699 @default.
- W4224253592 cites W3181464283 @default.
- W4224253592 cites W3203299716 @default.
- W4224253592 cites W4220965106 @default.
- W4224253592 doi "https://doi.org/10.3390/en15093017" @default.
- W4224253592 hasPublicationYear "2022" @default.
- W4224253592 type Work @default.
- W4224253592 citedByCount "4" @default.
- W4224253592 countsByYear W42242535922022 @default.
- W4224253592 countsByYear W42242535922023 @default.
- W4224253592 crossrefType "journal-article" @default.
- W4224253592 hasAuthorship W4224253592A5022405069 @default.
- W4224253592 hasAuthorship W4224253592A5042249431 @default.
- W4224253592 hasAuthorship W4224253592A5056608289 @default.
- W4224253592 hasAuthorship W4224253592A5074104734 @default.
- W4224253592 hasAuthorship W4224253592A5082668462 @default.
- W4224253592 hasBestOaLocation W42242535921 @default.
- W4224253592 hasConcept C107477482 @default.
- W4224253592 hasConcept C11413529 @default.
- W4224253592 hasConcept C119599485 @default.
- W4224253592 hasConcept C119857082 @default.
- W4224253592 hasConcept C127313418 @default.
- W4224253592 hasConcept C127413603 @default.
- W4224253592 hasConcept C154945302 @default.
- W4224253592 hasConcept C154982244 @default.
- W4224253592 hasConcept C155032097 @default.
- W4224253592 hasConcept C165205528 @default.
- W4224253592 hasConcept C165801399 @default.
- W4224253592 hasConcept C175551986 @default.
- W4224253592 hasConcept C41008148 @default.
- W4224253592 hasConcept C45374587 @default.
- W4224253592 hasConcept C50644808 @default.
- W4224253592 hasConcept C66322947 @default.
- W4224253592 hasConcept C83469408 @default.
- W4224253592 hasConcept C85617194 @default.
- W4224253592 hasConcept C86803240 @default.
- W4224253592 hasConcept C90856448 @default.
- W4224253592 hasConceptScore W4224253592C107477482 @default.
- W4224253592 hasConceptScore W4224253592C11413529 @default.
- W4224253592 hasConceptScore W4224253592C119599485 @default.
- W4224253592 hasConceptScore W4224253592C119857082 @default.
- W4224253592 hasConceptScore W4224253592C127313418 @default.
- W4224253592 hasConceptScore W4224253592C127413603 @default.
- W4224253592 hasConceptScore W4224253592C154945302 @default.
- W4224253592 hasConceptScore W4224253592C154982244 @default.
- W4224253592 hasConceptScore W4224253592C155032097 @default.
- W4224253592 hasConceptScore W4224253592C165205528 @default.
- W4224253592 hasConceptScore W4224253592C165801399 @default.
- W4224253592 hasConceptScore W4224253592C175551986 @default.
- W4224253592 hasConceptScore W4224253592C41008148 @default.
- W4224253592 hasConceptScore W4224253592C45374587 @default.
- W4224253592 hasConceptScore W4224253592C50644808 @default.
- W4224253592 hasConceptScore W4224253592C66322947 @default.
- W4224253592 hasConceptScore W4224253592C83469408 @default.
- W4224253592 hasConceptScore W4224253592C85617194 @default.
- W4224253592 hasConceptScore W4224253592C86803240 @default.