Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224253670> ?p ?o ?g. }
- W4224253670 endingPage "1907" @default.
- W4224253670 startingPage "1907" @default.
- W4224253670 abstract "An increasing amount of Brazilian rainforest is being lost or degraded for various reasons, both anthropogenic and natural, leading to a loss of biodiversity and further global consequences. Especially in the Brazilian state of Mato Grosso, soy production and large-scale cattle farms led to extensive losses of rainforest in recent years. We used a spectral mixture approach followed by a decision tree classification based on more than 30 years of Landsat data to quantify these losses. Research has shown that current methods for assessing forest degradation are lacking accuracy. Therefore, we generated classifications to determine land cover changes for each year, focusing on both cleared and degraded forest land. The analyses showed a decrease in forest area in Mato Grosso by 28.8% between 1986 and 2020. In order to measure changed forest structures for the selected period, fragmentation analyses based on diverse landscape metrics were carried out for the municipality of Colniza in Mato Grosso. It was found that forest areas experienced also a high degree of fragmentation over the study period, with an increase of 83.3% of the number of patches and a decrease of the mean patch area of 86.1% for the selected time period, resulting in altered habitats for flora and fauna." @default.
- W4224253670 created "2022-04-26" @default.
- W4224253670 creator A5030100892 @default.
- W4224253670 creator A5041981476 @default.
- W4224253670 creator A5086421163 @default.
- W4224253670 date "2022-04-15" @default.
- W4224253670 modified "2023-09-26" @default.
- W4224253670 title "A Spectral Mixture Analysis and Landscape Metrics Based Framework for Monitoring Spatiotemporal Forest Cover Changes: A Case Study in Mato Grosso, Brazil" @default.
- W4224253670 cites W1526937190 @default.
- W4224253670 cites W1965846105 @default.
- W4224253670 cites W1965853007 @default.
- W4224253670 cites W1966765124 @default.
- W4224253670 cites W1991355610 @default.
- W4224253670 cites W2002390308 @default.
- W4224253670 cites W2008685682 @default.
- W4224253670 cites W2031063649 @default.
- W4224253670 cites W2037157244 @default.
- W4224253670 cites W2037356735 @default.
- W4224253670 cites W2047460122 @default.
- W4224253670 cites W2055376392 @default.
- W4224253670 cites W2061692811 @default.
- W4224253670 cites W2066300309 @default.
- W4224253670 cites W2074550148 @default.
- W4224253670 cites W2075361594 @default.
- W4224253670 cites W2086823339 @default.
- W4224253670 cites W2100345851 @default.
- W4224253670 cites W2101845176 @default.
- W4224253670 cites W2105739041 @default.
- W4224253670 cites W2107617391 @default.
- W4224253670 cites W2112129373 @default.
- W4224253670 cites W2118798900 @default.
- W4224253670 cites W2123907688 @default.
- W4224253670 cites W2126116609 @default.
- W4224253670 cites W2130974872 @default.
- W4224253670 cites W2131615718 @default.
- W4224253670 cites W2135234976 @default.
- W4224253670 cites W2138804088 @default.
- W4224253670 cites W2139582718 @default.
- W4224253670 cites W2144881411 @default.
- W4224253670 cites W2164777277 @default.
- W4224253670 cites W2166394891 @default.
- W4224253670 cites W2166639519 @default.
- W4224253670 cites W2166917517 @default.
- W4224253670 cites W2167246809 @default.
- W4224253670 cites W2171883243 @default.
- W4224253670 cites W2172063876 @default.
- W4224253670 cites W2176654830 @default.
- W4224253670 cites W2215152799 @default.
- W4224253670 cites W2304410746 @default.
- W4224253670 cites W2417209869 @default.
- W4224253670 cites W2479200891 @default.
- W4224253670 cites W2607141325 @default.
- W4224253670 cites W2609620018 @default.
- W4224253670 cites W2614464134 @default.
- W4224253670 cites W2761935642 @default.
- W4224253670 cites W2790737279 @default.
- W4224253670 cites W2811408448 @default.
- W4224253670 cites W2829430317 @default.
- W4224253670 cites W2884266673 @default.
- W4224253670 cites W2890989984 @default.
- W4224253670 cites W2900106581 @default.
- W4224253670 cites W2907399367 @default.
- W4224253670 cites W2908452766 @default.
- W4224253670 cites W2912028827 @default.
- W4224253670 cites W2920737808 @default.
- W4224253670 cites W2961645411 @default.
- W4224253670 cites W2965951776 @default.
- W4224253670 cites W2992025463 @default.
- W4224253670 cites W2998944682 @default.
- W4224253670 cites W3001198293 @default.
- W4224253670 cites W3003550246 @default.
- W4224253670 cites W3004799420 @default.
- W4224253670 cites W3136354569 @default.
- W4224253670 cites W3205759022 @default.
- W4224253670 cites W3206546235 @default.
- W4224253670 cites W4200302434 @default.
- W4224253670 cites W4206143916 @default.
- W4224253670 doi "https://doi.org/10.3390/rs14081907" @default.
- W4224253670 hasPublicationYear "2022" @default.
- W4224253670 type Work @default.
- W4224253670 citedByCount "5" @default.
- W4224253670 countsByYear W42242536702022 @default.
- W4224253670 countsByYear W42242536702023 @default.
- W4224253670 crossrefType "journal-article" @default.
- W4224253670 hasAuthorship W4224253670A5030100892 @default.
- W4224253670 hasAuthorship W4224253670A5041981476 @default.
- W4224253670 hasAuthorship W4224253670A5086421163 @default.
- W4224253670 hasBestOaLocation W42242536701 @default.
- W4224253670 hasConcept C126894567 @default.
- W4224253670 hasConcept C130217890 @default.
- W4224253670 hasConcept C138944611 @default.
- W4224253670 hasConcept C18903297 @default.
- W4224253670 hasConcept C191015642 @default.
- W4224253670 hasConcept C205649164 @default.
- W4224253670 hasConcept C2619416 @default.
- W4224253670 hasConcept C2780648208 @default.
- W4224253670 hasConcept C2986088632 @default.
- W4224253670 hasConcept C39432304 @default.