Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224253732> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4224253732 endingPage "100027" @default.
- W4224253732 startingPage "100027" @default.
- W4224253732 abstract "In this work, we develop a model reduction method using sensitivity analysis and active learning to improve the computational efficiency of machine learning modeling of nonlinear processes. Specifically, sensitivity analysis is first used to identify important connections between model outputs and inputs. Subsequently, active learning is used to enrich the training set by iteratively identifying the training data that most efficiently improve model performance. Reduced-order recurrent neural networks (RNN) using the important input features obtained from sensitivity analysis are developed to approximate the nonlinear system, and are incorporated within model predictive control (MPC) to stabilize the nonlinear system at the steady-state. Finally, the effectiveness of the proposed machine learning modeling approach using sensitivity analysis and active learning and machine-learning-based predictive control scheme are demonstrated using a reactor-reactor-separator process example." @default.
- W4224253732 created "2022-04-26" @default.
- W4224253732 creator A5015091824 @default.
- W4224253732 creator A5033814890 @default.
- W4224253732 creator A5064544396 @default.
- W4224253732 date "2022-06-01" @default.
- W4224253732 modified "2023-09-25" @default.
- W4224253732 title "Improving computational efficiency of machine learning modeling of nonlinear processes using sensitivity analysis and active learning" @default.
- W4224253732 cites W1574180199 @default.
- W4224253732 cites W1989540221 @default.
- W4224253732 cites W2017337590 @default.
- W4224253732 cites W2036804696 @default.
- W4224253732 cites W2123871098 @default.
- W4224253732 cites W2146487916 @default.
- W4224253732 cites W2606744497 @default.
- W4224253732 cites W2912698379 @default.
- W4224253732 cites W2941329205 @default.
- W4224253732 cites W3000215758 @default.
- W4224253732 cites W3186962463 @default.
- W4224253732 cites W3203999728 @default.
- W4224253732 cites W4210412723 @default.
- W4224253732 cites W4210804151 @default.
- W4224253732 cites W4213163625 @default.
- W4224253732 doi "https://doi.org/10.1016/j.dche.2022.100027" @default.
- W4224253732 hasPublicationYear "2022" @default.
- W4224253732 type Work @default.
- W4224253732 citedByCount "4" @default.
- W4224253732 countsByYear W42242537322022 @default.
- W4224253732 countsByYear W42242537322023 @default.
- W4224253732 crossrefType "journal-article" @default.
- W4224253732 hasAuthorship W4224253732A5015091824 @default.
- W4224253732 hasAuthorship W4224253732A5033814890 @default.
- W4224253732 hasAuthorship W4224253732A5064544396 @default.
- W4224253732 hasBestOaLocation W42242537321 @default.
- W4224253732 hasConcept C111919701 @default.
- W4224253732 hasConcept C115903097 @default.
- W4224253732 hasConcept C119857082 @default.
- W4224253732 hasConcept C121332964 @default.
- W4224253732 hasConcept C127413603 @default.
- W4224253732 hasConcept C154945302 @default.
- W4224253732 hasConcept C158622935 @default.
- W4224253732 hasConcept C172205157 @default.
- W4224253732 hasConcept C21200559 @default.
- W4224253732 hasConcept C24326235 @default.
- W4224253732 hasConcept C2775924081 @default.
- W4224253732 hasConcept C41008148 @default.
- W4224253732 hasConcept C47446073 @default.
- W4224253732 hasConcept C50292564 @default.
- W4224253732 hasConcept C50644808 @default.
- W4224253732 hasConcept C62520636 @default.
- W4224253732 hasConcept C77967617 @default.
- W4224253732 hasConcept C98045186 @default.
- W4224253732 hasConceptScore W4224253732C111919701 @default.
- W4224253732 hasConceptScore W4224253732C115903097 @default.
- W4224253732 hasConceptScore W4224253732C119857082 @default.
- W4224253732 hasConceptScore W4224253732C121332964 @default.
- W4224253732 hasConceptScore W4224253732C127413603 @default.
- W4224253732 hasConceptScore W4224253732C154945302 @default.
- W4224253732 hasConceptScore W4224253732C158622935 @default.
- W4224253732 hasConceptScore W4224253732C172205157 @default.
- W4224253732 hasConceptScore W4224253732C21200559 @default.
- W4224253732 hasConceptScore W4224253732C24326235 @default.
- W4224253732 hasConceptScore W4224253732C2775924081 @default.
- W4224253732 hasConceptScore W4224253732C41008148 @default.
- W4224253732 hasConceptScore W4224253732C47446073 @default.
- W4224253732 hasConceptScore W4224253732C50292564 @default.
- W4224253732 hasConceptScore W4224253732C50644808 @default.
- W4224253732 hasConceptScore W4224253732C62520636 @default.
- W4224253732 hasConceptScore W4224253732C77967617 @default.
- W4224253732 hasConceptScore W4224253732C98045186 @default.
- W4224253732 hasFunder F4320320696 @default.
- W4224253732 hasFunder F4320320698 @default.
- W4224253732 hasLocation W42242537321 @default.
- W4224253732 hasOpenAccess W4224253732 @default.
- W4224253732 hasPrimaryLocation W42242537321 @default.
- W4224253732 hasRelatedWork W1986633584 @default.
- W4224253732 hasRelatedWork W2954428433 @default.
- W4224253732 hasRelatedWork W3025582806 @default.
- W4224253732 hasRelatedWork W3047894882 @default.
- W4224253732 hasRelatedWork W3136151706 @default.
- W4224253732 hasRelatedWork W3196155444 @default.
- W4224253732 hasRelatedWork W4286799911 @default.
- W4224253732 hasRelatedWork W4306321456 @default.
- W4224253732 hasRelatedWork W4320063314 @default.
- W4224253732 hasRelatedWork W4366320140 @default.
- W4224253732 hasVolume "3" @default.
- W4224253732 isParatext "false" @default.
- W4224253732 isRetracted "false" @default.
- W4224253732 workType "article" @default.