Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224257022> ?p ?o ?g. }
- W4224257022 endingPage "16297" @default.
- W4224257022 startingPage "16297" @default.
- W4224257022 abstract "Understanding and characterization of the planetary boundary layer (PBL) are of great importance in terms of air pollution management, weather forecasting, modelling of climate change, etc. Although many lidar-based approaches have been proposed for the retrieval of the PBL height (PBLH) in case studies, development of a robust lidar-based algorithm without human intervention is still of great challenging. In this work, we have demonstrated a novel deep-learning method based on the wavelet covariance transform (WCT) for the PBLH evaluation from atmospheric lidar measurements. Lidar profiles are evaluated according to the WCT with a series of dilation values from 200 m to 505 m to generate 2-dimensional wavelet images. A large number of wavelet images and the corresponding PBLH-labelled images are created as the training set for a convolutional neural network (CNN), which is implemented based on a modified VGG16 (VGG - Visual Geometry Group) convolutional neural network. Wavelet images obtained from lidar profiles have also been prepared as the test set to investigate the performance of the CNN. The PBLH is finally retrieved by evaluating the predicted PBLH-labelled image and the wavelet coefficients. Comparison studies with radiosonde data and the Micro-Pulse-Lidar Network (MPLNET) PBLH product have successfully validated the promising performance of the deep-learning method for the PBLH retrieval in practical atmospheric sensing." @default.
- W4224257022 created "2022-04-26" @default.
- W4224257022 creator A5005702263 @default.
- W4224257022 creator A5009941634 @default.
- W4224257022 creator A5028340794 @default.
- W4224257022 creator A5032581278 @default.
- W4224257022 creator A5052493382 @default.
- W4224257022 creator A5066237345 @default.
- W4224257022 date "2022-04-28" @default.
- W4224257022 modified "2023-09-25" @default.
- W4224257022 title "Retrieval of the planetary boundary layer height from lidar measurements by a deep-learning method based on the wavelet covariance transform" @default.
- W4224257022 cites W1481085474 @default.
- W4224257022 cites W1498635984 @default.
- W4224257022 cites W1603467754 @default.
- W4224257022 cites W1899790968 @default.
- W4224257022 cites W1906701334 @default.
- W4224257022 cites W1924639249 @default.
- W4224257022 cites W1930528368 @default.
- W4224257022 cites W1964824096 @default.
- W4224257022 cites W1980907615 @default.
- W4224257022 cites W1982265255 @default.
- W4224257022 cites W1985323710 @default.
- W4224257022 cites W1986694497 @default.
- W4224257022 cites W1998354984 @default.
- W4224257022 cites W2004584297 @default.
- W4224257022 cites W2024440411 @default.
- W4224257022 cites W2027898663 @default.
- W4224257022 cites W2032533256 @default.
- W4224257022 cites W2039734830 @default.
- W4224257022 cites W2045457716 @default.
- W4224257022 cites W2048723649 @default.
- W4224257022 cites W2068120055 @default.
- W4224257022 cites W2079495677 @default.
- W4224257022 cites W2082444465 @default.
- W4224257022 cites W2099087978 @default.
- W4224257022 cites W2111119860 @default.
- W4224257022 cites W2115330844 @default.
- W4224257022 cites W2116684894 @default.
- W4224257022 cites W2125829641 @default.
- W4224257022 cites W2132479033 @default.
- W4224257022 cites W2135891823 @default.
- W4224257022 cites W2136627489 @default.
- W4224257022 cites W2144339862 @default.
- W4224257022 cites W2146231238 @default.
- W4224257022 cites W2148083677 @default.
- W4224257022 cites W2150254478 @default.
- W4224257022 cites W2152069062 @default.
- W4224257022 cites W2152320768 @default.
- W4224257022 cites W2157862942 @default.
- W4224257022 cites W2158719396 @default.
- W4224257022 cites W2173242367 @default.
- W4224257022 cites W2177046654 @default.
- W4224257022 cites W2248448878 @default.
- W4224257022 cites W2395638168 @default.
- W4224257022 cites W2469366019 @default.
- W4224257022 cites W2535815782 @default.
- W4224257022 cites W2539577779 @default.
- W4224257022 cites W2560622558 @default.
- W4224257022 cites W2562180067 @default.
- W4224257022 cites W2589930038 @default.
- W4224257022 cites W2607333215 @default.
- W4224257022 cites W2624881213 @default.
- W4224257022 cites W2808892313 @default.
- W4224257022 cites W2938092498 @default.
- W4224257022 cites W2954996726 @default.
- W4224257022 cites W2955825715 @default.
- W4224257022 cites W3208494634 @default.
- W4224257022 cites W4242931674 @default.
- W4224257022 doi "https://doi.org/10.1364/oe.454094" @default.
- W4224257022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36221475" @default.
- W4224257022 hasPublicationYear "2022" @default.
- W4224257022 type Work @default.
- W4224257022 citedByCount "1" @default.
- W4224257022 countsByYear W42242570222022 @default.
- W4224257022 crossrefType "journal-article" @default.
- W4224257022 hasAuthorship W4224257022A5005702263 @default.
- W4224257022 hasAuthorship W4224257022A5009941634 @default.
- W4224257022 hasAuthorship W4224257022A5028340794 @default.
- W4224257022 hasAuthorship W4224257022A5032581278 @default.
- W4224257022 hasAuthorship W4224257022A5052493382 @default.
- W4224257022 hasAuthorship W4224257022A5066237345 @default.
- W4224257022 hasBestOaLocation W42242570221 @default.
- W4224257022 hasConcept C105795698 @default.
- W4224257022 hasConcept C108583219 @default.
- W4224257022 hasConcept C127313418 @default.
- W4224257022 hasConcept C153180895 @default.
- W4224257022 hasConcept C153294291 @default.
- W4224257022 hasConcept C154945302 @default.
- W4224257022 hasConcept C178650346 @default.
- W4224257022 hasConcept C196216189 @default.
- W4224257022 hasConcept C196558001 @default.
- W4224257022 hasConcept C205649164 @default.
- W4224257022 hasConcept C33923547 @default.
- W4224257022 hasConcept C41008148 @default.
- W4224257022 hasConcept C47432892 @default.
- W4224257022 hasConcept C51399673 @default.
- W4224257022 hasConcept C62649853 @default.
- W4224257022 hasConcept C81363708 @default.