Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224271884> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4224271884 endingPage "31218" @default.
- W4224271884 startingPage "31201" @default.
- W4224271884 abstract "The latest threat to global health is the coronavirus disease 2019 (COVID-19) pandemic. To prevent COVID-19, recognizing and isolating the infected patients is an essential step. The primary diagnosis method is Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. However, the sensitivity of this test is not satisfactory to successfully control the COVID-19 outbreak. Although there exist many datasets of chest X-rays (CXR) images, but few COVID-19 CXRs are presently accessible owing to privacy of patients. Thus, many researchers have utilized data augmentation techniques to augment the datasets. But, it may cause over-fitting issues, as the existing data augmentation techniques include small modifications to CXRs. Therefore, in this paper, an efficient deep convolutional generative adversarial network and convolutional neural network (DGCNN) is designed to diagnose COVID-19 suspected subjects. Deep convolutional generative adversarial network (DGAN) consists of two networks trained adversarially such that one generates fake images and the other differentiates between them. Thereafter, convolutional neural network (CNN) is utilized for classification purpose. Extensive experiments are conducted to evaluate the performance of the proposed DGCNN. Performance analysis demonstrates that DGCNN can highly improves the diagnosis performance." @default.
- W4224271884 created "2022-04-26" @default.
- W4224271884 creator A5071634041 @default.
- W4224271884 creator A5080845566 @default.
- W4224271884 date "2022-04-08" @default.
- W4224271884 modified "2023-09-30" @default.
- W4224271884 title "DGCNN: deep convolutional generative adversarial network based convolutional neural network for diagnosis of COVID-19" @default.
- W4224271884 cites W2599354622 @default.
- W4224271884 cites W2794022343 @default.
- W4224271884 cites W2896328393 @default.
- W4224271884 cites W2907719205 @default.
- W4224271884 cites W2974031746 @default.
- W4224271884 cites W2998648213 @default.
- W4224271884 cites W3003598450 @default.
- W4224271884 cites W3010702679 @default.
- W4224271884 cites W3024801014 @default.
- W4224271884 cites W3039471517 @default.
- W4224271884 cites W3048236912 @default.
- W4224271884 cites W3085109610 @default.
- W4224271884 cites W3105081694 @default.
- W4224271884 cites W3155103849 @default.
- W4224271884 cites W3162351260 @default.
- W4224271884 cites W3184377958 @default.
- W4224271884 cites W3191077953 @default.
- W4224271884 doi "https://doi.org/10.1007/s11042-022-12640-6" @default.
- W4224271884 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35431606" @default.
- W4224271884 hasPublicationYear "2022" @default.
- W4224271884 type Work @default.
- W4224271884 citedByCount "2" @default.
- W4224271884 countsByYear W42242718842023 @default.
- W4224271884 crossrefType "journal-article" @default.
- W4224271884 hasAuthorship W4224271884A5071634041 @default.
- W4224271884 hasAuthorship W4224271884A5080845566 @default.
- W4224271884 hasBestOaLocation W42242718841 @default.
- W4224271884 hasConcept C108583219 @default.
- W4224271884 hasConcept C119857082 @default.
- W4224271884 hasConcept C142724271 @default.
- W4224271884 hasConcept C153180895 @default.
- W4224271884 hasConcept C154945302 @default.
- W4224271884 hasConcept C2779134260 @default.
- W4224271884 hasConcept C2988773926 @default.
- W4224271884 hasConcept C3008058167 @default.
- W4224271884 hasConcept C37736160 @default.
- W4224271884 hasConcept C41008148 @default.
- W4224271884 hasConcept C524204448 @default.
- W4224271884 hasConcept C71924100 @default.
- W4224271884 hasConcept C81363708 @default.
- W4224271884 hasConceptScore W4224271884C108583219 @default.
- W4224271884 hasConceptScore W4224271884C119857082 @default.
- W4224271884 hasConceptScore W4224271884C142724271 @default.
- W4224271884 hasConceptScore W4224271884C153180895 @default.
- W4224271884 hasConceptScore W4224271884C154945302 @default.
- W4224271884 hasConceptScore W4224271884C2779134260 @default.
- W4224271884 hasConceptScore W4224271884C2988773926 @default.
- W4224271884 hasConceptScore W4224271884C3008058167 @default.
- W4224271884 hasConceptScore W4224271884C37736160 @default.
- W4224271884 hasConceptScore W4224271884C41008148 @default.
- W4224271884 hasConceptScore W4224271884C524204448 @default.
- W4224271884 hasConceptScore W4224271884C71924100 @default.
- W4224271884 hasConceptScore W4224271884C81363708 @default.
- W4224271884 hasIssue "22" @default.
- W4224271884 hasLocation W42242718841 @default.
- W4224271884 hasLocation W42242718842 @default.
- W4224271884 hasLocation W42242718843 @default.
- W4224271884 hasOpenAccess W4224271884 @default.
- W4224271884 hasPrimaryLocation W42242718841 @default.
- W4224271884 hasRelatedWork W2337926734 @default.
- W4224271884 hasRelatedWork W2732542196 @default.
- W4224271884 hasRelatedWork W2738221750 @default.
- W4224271884 hasRelatedWork W2998996837 @default.
- W4224271884 hasRelatedWork W3156786002 @default.
- W4224271884 hasRelatedWork W4311257506 @default.
- W4224271884 hasRelatedWork W4320802194 @default.
- W4224271884 hasRelatedWork W4366224123 @default.
- W4224271884 hasRelatedWork W4379255972 @default.
- W4224271884 hasRelatedWork W564581980 @default.
- W4224271884 hasVolume "81" @default.
- W4224271884 isParatext "false" @default.
- W4224271884 isRetracted "false" @default.
- W4224271884 workType "article" @default.