Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224272007> ?p ?o ?g. }
- W4224272007 endingPage "54" @default.
- W4224272007 startingPage "40" @default.
- W4224272007 abstract "Background: Despite all the medical advances introduced for personalized patient treatment and the research supported in search of genetic patterns inherent to the occurrence of its different manifestations on the human being, the unequivocal and effective treatment of cancer, unfortunately, remains as an unresolved challenge within the scientific panorama. Until a universal solution for its control is achieved, early detection mechanisms for preventative diagnosis increasingly avoid treatments, resulting in unreliable effectiveness. The discovery of unequivocal gene patterns allowing us to discern between multiple pathological states could help shed light on patients suspected of an oncological disease but with uncertainty in the histological and immunohistochemical results. Methods: This study presents an approach for pan-cancer diagnosis based on gene expression analysis that determines a reduced set of 12 genes, making it possible to distinguish between the main 14 cancer diseases. Results: Our cascade machine learning process has been robustly designed, obtaining a mean F1 score of 92% and a mean AUC of 99.37% in the test set. Our study showed heterogeneous over-or underexpression of the analyzed genes, which can act as oncogenes or tumor suppressor genes. Upregulation of LPAR5 and PAX8 was demonstrated in thyroid cancer samples. KLF5 was highly expressed in the majority of cancer types. Conclusion: Our model constituted a useful tool for pan-cancer gene expression evaluation. In addition to providing biological clues about a hypothetical common origin of cancer, the scalability of this study promises to be very useful for future studies to reinforce, confirm, and extend the biological observations presented here. Code availability and datasets are stored in the following GitHub repository to aim for the research reproducibility: https://github.com/CasedUgr/PanCancerClassification." @default.
- W4224272007 created "2022-04-26" @default.
- W4224272007 creator A5040100241 @default.
- W4224272007 creator A5051293472 @default.
- W4224272007 creator A5058407177 @default.
- W4224272007 creator A5059976520 @default.
- W4224272007 creator A5074356785 @default.
- W4224272007 creator A5083042926 @default.
- W4224272007 creator A5089029287 @default.
- W4224272007 date "2023-01-01" @default.
- W4224272007 modified "2023-10-15" @default.
- W4224272007 title "Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System" @default.
- W4224272007 cites W1561757020 @default.
- W4224272007 cites W1850958308 @default.
- W4224272007 cites W1978556089 @default.
- W4224272007 cites W1981014348 @default.
- W4224272007 cites W1994269934 @default.
- W4224272007 cites W2030574228 @default.
- W4224272007 cites W2040814250 @default.
- W4224272007 cites W2062871120 @default.
- W4224272007 cites W2078406850 @default.
- W4224272007 cites W2102889733 @default.
- W4224272007 cites W2108516575 @default.
- W4224272007 cites W2109754108 @default.
- W4224272007 cites W2111547563 @default.
- W4224272007 cites W2117462620 @default.
- W4224272007 cites W2119782683 @default.
- W4224272007 cites W2122111042 @default.
- W4224272007 cites W2134526812 @default.
- W4224272007 cites W2139392222 @default.
- W4224272007 cites W2146512944 @default.
- W4224272007 cites W2154053567 @default.
- W4224272007 cites W2158485828 @default.
- W4224272007 cites W2169456326 @default.
- W4224272007 cites W2170219300 @default.
- W4224272007 cites W2179438025 @default.
- W4224272007 cites W2262249917 @default.
- W4224272007 cites W2320581730 @default.
- W4224272007 cites W2412681020 @default.
- W4224272007 cites W2556073362 @default.
- W4224272007 cites W2579522812 @default.
- W4224272007 cites W2618999013 @default.
- W4224272007 cites W2623288924 @default.
- W4224272007 cites W2724430069 @default.
- W4224272007 cites W2741493540 @default.
- W4224272007 cites W2766445261 @default.
- W4224272007 cites W2769619799 @default.
- W4224272007 cites W2774186339 @default.
- W4224272007 cites W2789924919 @default.
- W4224272007 cites W2795461997 @default.
- W4224272007 cites W2896357401 @default.
- W4224272007 cites W2898919442 @default.
- W4224272007 cites W2911935466 @default.
- W4224272007 cites W2913716396 @default.
- W4224272007 cites W2916020941 @default.
- W4224272007 cites W2943547716 @default.
- W4224272007 cites W2950628226 @default.
- W4224272007 cites W2955585671 @default.
- W4224272007 cites W2965743638 @default.
- W4224272007 cites W2967599871 @default.
- W4224272007 cites W2968697750 @default.
- W4224272007 cites W2969686455 @default.
- W4224272007 cites W2974328964 @default.
- W4224272007 cites W2974355375 @default.
- W4224272007 cites W2977751512 @default.
- W4224272007 cites W2980631310 @default.
- W4224272007 cites W2984051566 @default.
- W4224272007 cites W2995998572 @default.
- W4224272007 cites W2997036323 @default.
- W4224272007 cites W2998473000 @default.
- W4224272007 cites W2999623704 @default.
- W4224272007 cites W3000623945 @default.
- W4224272007 cites W3005879523 @default.
- W4224272007 cites W3012566140 @default.
- W4224272007 cites W3019265755 @default.
- W4224272007 cites W3027086020 @default.
- W4224272007 cites W3037167330 @default.
- W4224272007 cites W3049217745 @default.
- W4224272007 cites W3081634347 @default.
- W4224272007 cites W3082073620 @default.
- W4224272007 cites W3086070139 @default.
- W4224272007 cites W3107263157 @default.
- W4224272007 cites W3155385898 @default.
- W4224272007 cites W3174732582 @default.
- W4224272007 cites W4239510810 @default.
- W4224272007 doi "https://doi.org/10.2174/1574893617666220421100512" @default.
- W4224272007 hasPublicationYear "2023" @default.
- W4224272007 type Work @default.
- W4224272007 citedByCount "0" @default.
- W4224272007 crossrefType "journal-article" @default.
- W4224272007 hasAuthorship W4224272007A5040100241 @default.
- W4224272007 hasAuthorship W4224272007A5051293472 @default.
- W4224272007 hasAuthorship W4224272007A5058407177 @default.
- W4224272007 hasAuthorship W4224272007A5059976520 @default.
- W4224272007 hasAuthorship W4224272007A5074356785 @default.
- W4224272007 hasAuthorship W4224272007A5083042926 @default.
- W4224272007 hasAuthorship W4224272007A5089029287 @default.
- W4224272007 hasConcept C104317684 @default.