Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224275364> ?p ?o ?g. }
- W4224275364 endingPage "330" @default.
- W4224275364 startingPage "318" @default.
- W4224275364 abstract "We present a supervised deep neural network model for phase retrieval of coherent X-ray imaging and evaluate the performance. A supervised deep-learning-based approach requires a large amount of pre-training datasets. In most proposed models, the various experimental uncertainties are not considered when the input dataset, corresponding to the diffraction image in reciprocal space, is generated. We explore the performance of the deep neural network model, which is trained with an ideal quality of dataset, when it faces real-like corrupted diffraction images. We focus on three aspects of data qualities such as a detection dynamic range, a degree of coherence and noise level. The investigation shows that the deep neural network model is robust to a limited dynamic range and partially coherent X-ray illumination in comparison to the traditional phase retrieval, although it is more sensitive to the noise than the iteration-based method. This study suggests a baseline capability of the supervised deep neural network model for coherent X-ray imaging in preparation for the deployment to the laboratory where diffraction images are acquired." @default.
- W4224275364 created "2022-04-26" @default.
- W4224275364 creator A5038083997 @default.
- W4224275364 creator A5059505829 @default.
- W4224275364 creator A5074250553 @default.
- W4224275364 date "2022-04-18" @default.
- W4224275364 modified "2023-10-18" @default.
- W4224275364 title "Performance Evaluation of Deep Neural Network Model for Coherent X-ray Imaging" @default.
- W4224275364 cites W1480844027 @default.
- W4224275364 cites W1847564501 @default.
- W4224275364 cites W1926501052 @default.
- W4224275364 cites W1971686444 @default.
- W4224275364 cites W1972822190 @default.
- W4224275364 cites W1983219740 @default.
- W4224275364 cites W1984817386 @default.
- W4224275364 cites W1994007038 @default.
- W4224275364 cites W1995432585 @default.
- W4224275364 cites W2002849329 @default.
- W4224275364 cites W2007593159 @default.
- W4224275364 cites W2014844812 @default.
- W4224275364 cites W2015911499 @default.
- W4224275364 cites W2017692871 @default.
- W4224275364 cites W2026320244 @default.
- W4224275364 cites W2033257018 @default.
- W4224275364 cites W2047087020 @default.
- W4224275364 cites W2051074166 @default.
- W4224275364 cites W2054352379 @default.
- W4224275364 cites W2058520165 @default.
- W4224275364 cites W2059057028 @default.
- W4224275364 cites W2071339623 @default.
- W4224275364 cites W2073692536 @default.
- W4224275364 cites W2082812021 @default.
- W4224275364 cites W2090964845 @default.
- W4224275364 cites W2092306008 @default.
- W4224275364 cites W2093486691 @default.
- W4224275364 cites W2101769813 @default.
- W4224275364 cites W2102716058 @default.
- W4224275364 cites W2105878409 @default.
- W4224275364 cites W2119379479 @default.
- W4224275364 cites W2142016131 @default.
- W4224275364 cites W2152477315 @default.
- W4224275364 cites W2152537098 @default.
- W4224275364 cites W2159644320 @default.
- W4224275364 cites W2732260623 @default.
- W4224275364 cites W2744670898 @default.
- W4224275364 cites W2750304929 @default.
- W4224275364 cites W2763112995 @default.
- W4224275364 cites W2772609332 @default.
- W4224275364 cites W2786755759 @default.
- W4224275364 cites W2800209654 @default.
- W4224275364 cites W2807071916 @default.
- W4224275364 cites W2810363749 @default.
- W4224275364 cites W2903768933 @default.
- W4224275364 cites W2937491120 @default.
- W4224275364 cites W3046390341 @default.
- W4224275364 cites W3106175022 @default.
- W4224275364 cites W3159294647 @default.
- W4224275364 cites W3162117927 @default.
- W4224275364 cites W3162760148 @default.
- W4224275364 cites W3171947006 @default.
- W4224275364 cites W3186181424 @default.
- W4224275364 cites W3208857802 @default.
- W4224275364 cites W3214000594 @default.
- W4224275364 cites W4206720985 @default.
- W4224275364 cites W4225642274 @default.
- W4224275364 cites W4226282003 @default.
- W4224275364 doi "https://doi.org/10.3390/ai3020020" @default.
- W4224275364 hasPublicationYear "2022" @default.
- W4224275364 type Work @default.
- W4224275364 citedByCount "0" @default.
- W4224275364 crossrefType "journal-article" @default.
- W4224275364 hasAuthorship W4224275364A5038083997 @default.
- W4224275364 hasAuthorship W4224275364A5059505829 @default.
- W4224275364 hasAuthorship W4224275364A5074250553 @default.
- W4224275364 hasBestOaLocation W42242753641 @default.
- W4224275364 hasConcept C105795698 @default.
- W4224275364 hasConcept C108583219 @default.
- W4224275364 hasConcept C115961682 @default.
- W4224275364 hasConcept C120665830 @default.
- W4224275364 hasConcept C121332964 @default.
- W4224275364 hasConcept C153180895 @default.
- W4224275364 hasConcept C154945302 @default.
- W4224275364 hasConcept C192209626 @default.
- W4224275364 hasConcept C2781181686 @default.
- W4224275364 hasConcept C33923547 @default.
- W4224275364 hasConcept C41008148 @default.
- W4224275364 hasConcept C50644808 @default.
- W4224275364 hasConcept C99498987 @default.
- W4224275364 hasConceptScore W4224275364C105795698 @default.
- W4224275364 hasConceptScore W4224275364C108583219 @default.
- W4224275364 hasConceptScore W4224275364C115961682 @default.
- W4224275364 hasConceptScore W4224275364C120665830 @default.
- W4224275364 hasConceptScore W4224275364C121332964 @default.
- W4224275364 hasConceptScore W4224275364C153180895 @default.
- W4224275364 hasConceptScore W4224275364C154945302 @default.
- W4224275364 hasConceptScore W4224275364C192209626 @default.
- W4224275364 hasConceptScore W4224275364C2781181686 @default.
- W4224275364 hasConceptScore W4224275364C33923547 @default.