Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224278475> ?p ?o ?g. }
- W4224278475 abstract "The interface between field biology and technology is energizing the collection of vast quantities of environmental data. Passive acoustic monitoring, the use of unattended recording devices to capture environmental sound, is an example where technological advances have facilitated an influx of data that routinely exceeds the capacity for analysis. Computational advances, particularly the integration of machine learning approaches, will support data extraction efforts. However, the analysis and interpretation of these data will require parallel growth in conceptual and technical approaches for data analysis. Here, we use a large hand-annotated dataset to showcase analysis approaches that will become increasingly useful as datasets grow and data extraction can be partially automated.We propose and demonstrate seven technical approaches for analyzing bioacoustic data. These include the following: (1) generating species lists and descriptions of vocal variation, (2) assessing how abiotic factors (e.g., rain and wind) impact vocalization rates, (3) testing for differences in community vocalization activity across sites and habitat types, (4) quantifying the phenology of vocal activity, (5) testing for spatiotemporal correlations in vocalizations within species, (6) among species, and (7) using rarefaction analysis to quantify diversity and optimize bioacoustic sampling.To demonstrate these approaches, we sampled in 2016 and 2018 and used hand annotations of 129,866 bird vocalizations from two forests in New Hampshire, USA, including sites in the Hubbard Brook Experiment Forest where bioacoustic data could be integrated with more than 50 years of observer-based avian studies. Acoustic monitoring revealed differences in community patterns in vocalization activity between forests of different ages, as well as between nearby similar watersheds. Of numerous environmental variables that were evaluated, background noise was most clearly related to vocalization rates. The songbird community included one cluster of species where vocalization rates declined as ambient noise increased and another cluster where vocalization rates declined over the nesting season. In some common species, the number of vocalizations produced per day was correlated at scales of up to 15 km. Rarefaction analyses showed that adding sampling sites increased species detections more than adding sampling days.Although our analyses used hand-annotated data, the methods will extend readily to large-scale automated detection of vocalization events. Such data are likely to become increasingly available as autonomous recording units become more advanced, affordable, and power efficient. Passive acoustic monitoring with human or automated identification at the species level offers growing potential to complement observer-based studies of avian ecology." @default.
- W4224278475 created "2022-04-26" @default.
- W4224278475 creator A5037001375 @default.
- W4224278475 creator A5059773691 @default.
- W4224278475 creator A5062236245 @default.
- W4224278475 creator A5068468875 @default.
- W4224278475 creator A5071899551 @default.
- W4224278475 creator A5076770692 @default.
- W4224278475 creator A5085528590 @default.
- W4224278475 creator A5088662857 @default.
- W4224278475 date "2022-04-01" @default.
- W4224278475 modified "2023-10-14" @default.
- W4224278475 title "Analytical approaches for evaluating passive acoustic monitoring data: A case study of avian vocalizations" @default.
- W4224278475 cites W100307374 @default.
- W4224278475 cites W1488931524 @default.
- W4224278475 cites W1529830495 @default.
- W4224278475 cites W1587644769 @default.
- W4224278475 cites W1630079990 @default.
- W4224278475 cites W1667559242 @default.
- W4224278475 cites W1966153221 @default.
- W4224278475 cites W1967818247 @default.
- W4224278475 cites W1968383185 @default.
- W4224278475 cites W1976108536 @default.
- W4224278475 cites W1978356258 @default.
- W4224278475 cites W1983173862 @default.
- W4224278475 cites W1988960095 @default.
- W4224278475 cites W1990573819 @default.
- W4224278475 cites W2018140578 @default.
- W4224278475 cites W2027248267 @default.
- W4224278475 cites W2028614599 @default.
- W4224278475 cites W2030654827 @default.
- W4224278475 cites W2031195652 @default.
- W4224278475 cites W2042393213 @default.
- W4224278475 cites W2044579322 @default.
- W4224278475 cites W2052639886 @default.
- W4224278475 cites W2054455608 @default.
- W4224278475 cites W2057605409 @default.
- W4224278475 cites W2058032608 @default.
- W4224278475 cites W2058412220 @default.
- W4224278475 cites W2064618263 @default.
- W4224278475 cites W2068849746 @default.
- W4224278475 cites W2071512802 @default.
- W4224278475 cites W2086865523 @default.
- W4224278475 cites W2094128318 @default.
- W4224278475 cites W2104556004 @default.
- W4224278475 cites W2113903422 @default.
- W4224278475 cites W2117416471 @default.
- W4224278475 cites W2128718273 @default.
- W4224278475 cites W2131545754 @default.
- W4224278475 cites W2131905365 @default.
- W4224278475 cites W2135539334 @default.
- W4224278475 cites W2138761758 @default.
- W4224278475 cites W2139156166 @default.
- W4224278475 cites W2142718553 @default.
- W4224278475 cites W2146368895 @default.
- W4224278475 cites W2151168340 @default.
- W4224278475 cites W2151277223 @default.
- W4224278475 cites W2163197710 @default.
- W4224278475 cites W2165899408 @default.
- W4224278475 cites W2171204180 @default.
- W4224278475 cites W2178512066 @default.
- W4224278475 cites W2209564373 @default.
- W4224278475 cites W2215136171 @default.
- W4224278475 cites W2295472454 @default.
- W4224278475 cites W2313561335 @default.
- W4224278475 cites W2326871574 @default.
- W4224278475 cites W2327432707 @default.
- W4224278475 cites W2330774932 @default.
- W4224278475 cites W2331725058 @default.
- W4224278475 cites W2416321244 @default.
- W4224278475 cites W2554429600 @default.
- W4224278475 cites W2563550206 @default.
- W4224278475 cites W2761494123 @default.
- W4224278475 cites W2763256674 @default.
- W4224278475 cites W2774693939 @default.
- W4224278475 cites W2784209317 @default.
- W4224278475 cites W2792706024 @default.
- W4224278475 cites W2803569403 @default.
- W4224278475 cites W2885754465 @default.
- W4224278475 cites W2900884109 @default.
- W4224278475 cites W2947799133 @default.
- W4224278475 cites W2954963394 @default.
- W4224278475 cites W2969995854 @default.
- W4224278475 cites W2982054194 @default.
- W4224278475 cites W2999187172 @default.
- W4224278475 cites W3021821769 @default.
- W4224278475 cites W3121931845 @default.
- W4224278475 cites W3132085514 @default.
- W4224278475 cites W4224278475 @default.
- W4224278475 cites W4233820463 @default.
- W4224278475 cites W4244551616 @default.
- W4224278475 cites W877284321 @default.
- W4224278475 doi "https://doi.org/10.1002/ece3.8797" @default.
- W4224278475 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35475182" @default.
- W4224278475 hasPublicationYear "2022" @default.
- W4224278475 type Work @default.
- W4224278475 citedByCount "6" @default.
- W4224278475 countsByYear W42242784752022 @default.
- W4224278475 countsByYear W42242784752023 @default.
- W4224278475 crossrefType "journal-article" @default.