Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224279734> ?p ?o ?g. }
- W4224279734 endingPage "1189" @default.
- W4224279734 startingPage "1189" @default.
- W4224279734 abstract "The aim of this study is to develop an automatic segmentation algorithm based on paranasal sinus CT images, which realizes automatic identification and segmentation of the sinus boundary and its inflamed proportions, as well as the reconstruction of normal sinus and inflamed site volumes. Our goal is to overcome the current clinical dilemma of manually calculating the inflammatory sinus volume, which is objective and ineffective. A semi-supervised learning algorithm using pseudo-labels for self-training was proposed to train convolutional neural networks, which consisted of SENet, MobileNet, and ResNet. An aggregate of 175 CT sets was analyzed, 50 of which were from patients who subsequently underwent sinus surgery. A 3D view and volume-based modified Lund-Mackay score were determined and compared with traditional scores. Compared to state-of-the-art networks, our modifications achieved significant improvements in both sinus segmentation and classification, with an average pixel accuracy of 99.67%, an MIoU of 89.75%, and a Dice coefficient of 90.79%. The fully automatic nasal sinus volume reconstruction system was successfully obtained the relevant detailed information by accurately acquiring the nasal sinus contour edges in the CT images. The accuracy of our algorithm has been validated and the results can be effectively applied to actual clinical medicine or forensic research." @default.
- W4224279734 created "2022-04-26" @default.
- W4224279734 creator A5050698993 @default.
- W4224279734 creator A5080900585 @default.
- W4224279734 date "2022-04-06" @default.
- W4224279734 modified "2023-10-17" @default.
- W4224279734 title "Fully Automatic Segmentation, Identification and Preoperative Planning for Nasal Surgery of Sinuses Using Semi-Supervised Learning and Volumetric Reconstruction" @default.
- W4224279734 cites W1562677435 @default.
- W4224279734 cites W1968388114 @default.
- W4224279734 cites W1989441941 @default.
- W4224279734 cites W2008924991 @default.
- W4224279734 cites W2050014225 @default.
- W4224279734 cites W2062624963 @default.
- W4224279734 cites W2068113013 @default.
- W4224279734 cites W2074244664 @default.
- W4224279734 cites W2117539524 @default.
- W4224279734 cites W2122105834 @default.
- W4224279734 cites W2150711253 @default.
- W4224279734 cites W2154741421 @default.
- W4224279734 cites W2758062614 @default.
- W4224279734 cites W2768906025 @default.
- W4224279734 cites W2776581140 @default.
- W4224279734 cites W2782061080 @default.
- W4224279734 cites W2792544329 @default.
- W4224279734 cites W2810262965 @default.
- W4224279734 cites W2811205836 @default.
- W4224279734 cites W2894558420 @default.
- W4224279734 cites W2913941036 @default.
- W4224279734 cites W2945225401 @default.
- W4224279734 cites W2951745747 @default.
- W4224279734 cites W2954996726 @default.
- W4224279734 cites W2978870963 @default.
- W4224279734 cites W2980142923 @default.
- W4224279734 cites W2995247280 @default.
- W4224279734 cites W2999344132 @default.
- W4224279734 cites W3007682521 @default.
- W4224279734 cites W3014641072 @default.
- W4224279734 cites W3017372582 @default.
- W4224279734 cites W3028015151 @default.
- W4224279734 cites W3096812112 @default.
- W4224279734 cites W3156748097 @default.
- W4224279734 cites W4214881770 @default.
- W4224279734 cites W63384772 @default.
- W4224279734 doi "https://doi.org/10.3390/math10071189" @default.
- W4224279734 hasPublicationYear "2022" @default.
- W4224279734 type Work @default.
- W4224279734 citedByCount "2" @default.
- W4224279734 countsByYear W42242797342022 @default.
- W4224279734 countsByYear W42242797342023 @default.
- W4224279734 crossrefType "journal-article" @default.
- W4224279734 hasAuthorship W4224279734A5050698993 @default.
- W4224279734 hasAuthorship W4224279734A5080900585 @default.
- W4224279734 hasBestOaLocation W42242797341 @default.
- W4224279734 hasConcept C124504099 @default.
- W4224279734 hasConcept C126838900 @default.
- W4224279734 hasConcept C141071460 @default.
- W4224279734 hasConcept C153180895 @default.
- W4224279734 hasConcept C154945302 @default.
- W4224279734 hasConcept C157369684 @default.
- W4224279734 hasConcept C163892561 @default.
- W4224279734 hasConcept C2776407911 @default.
- W4224279734 hasConcept C2779370443 @default.
- W4224279734 hasConcept C2993524501 @default.
- W4224279734 hasConcept C31972630 @default.
- W4224279734 hasConcept C41008148 @default.
- W4224279734 hasConcept C59822182 @default.
- W4224279734 hasConcept C71924100 @default.
- W4224279734 hasConcept C81363708 @default.
- W4224279734 hasConcept C86803240 @default.
- W4224279734 hasConcept C89600930 @default.
- W4224279734 hasConceptScore W4224279734C124504099 @default.
- W4224279734 hasConceptScore W4224279734C126838900 @default.
- W4224279734 hasConceptScore W4224279734C141071460 @default.
- W4224279734 hasConceptScore W4224279734C153180895 @default.
- W4224279734 hasConceptScore W4224279734C154945302 @default.
- W4224279734 hasConceptScore W4224279734C157369684 @default.
- W4224279734 hasConceptScore W4224279734C163892561 @default.
- W4224279734 hasConceptScore W4224279734C2776407911 @default.
- W4224279734 hasConceptScore W4224279734C2779370443 @default.
- W4224279734 hasConceptScore W4224279734C2993524501 @default.
- W4224279734 hasConceptScore W4224279734C31972630 @default.
- W4224279734 hasConceptScore W4224279734C41008148 @default.
- W4224279734 hasConceptScore W4224279734C59822182 @default.
- W4224279734 hasConceptScore W4224279734C71924100 @default.
- W4224279734 hasConceptScore W4224279734C81363708 @default.
- W4224279734 hasConceptScore W4224279734C86803240 @default.
- W4224279734 hasConceptScore W4224279734C89600930 @default.
- W4224279734 hasIssue "7" @default.
- W4224279734 hasLocation W42242797341 @default.
- W4224279734 hasOpenAccess W4224279734 @default.
- W4224279734 hasPrimaryLocation W42242797341 @default.
- W4224279734 hasRelatedWork W2157102420 @default.
- W4224279734 hasRelatedWork W2355988666 @default.
- W4224279734 hasRelatedWork W2358750991 @default.
- W4224279734 hasRelatedWork W2362904784 @default.
- W4224279734 hasRelatedWork W2378419187 @default.
- W4224279734 hasRelatedWork W2379360991 @default.
- W4224279734 hasRelatedWork W2385113694 @default.