Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224281305> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4224281305 endingPage "100162" @default.
- W4224281305 startingPage "100162" @default.
- W4224281305 abstract "Micro-electro-mechanical systems (MEMS) are of great importance in a broad range of applications including vehicle safety and consumer electronics. During the testing of these devices, large heterogeneous data sets containing a variety of parameters are recorded. Aiming to substitute costly measurements as well as to gain insight into the relations among the measured parameters, graph neural networks (GNNs) are investigated. Thus, the questions are addressed whether for inference of MEMS final module level test parameters, working on graph structures leads to an improvement of the predictive performance compared to the analysis via standard machine learning approaches on tabular data and how the graph structure and learning algorithm contribute to the overall performance. To evaluate this, in an empirical study different graph representations of the acquired test data were set up. On these, four different state-of-the-art GNN architectures were trained and compared on the task of raw sensitivity prediction for a MEMS gyroscope. Whereas the GNNs performed on par with a light gradient boosting machine, neural network and multivariate adaptive regression splines model used as baseline on the complete data set, in the presence of sparse data, the GNNs outperformed the baseline methods in terms of the overall root-mean-square error (RMSE) and achieved distinct improvement in the maximum error when trained on data with similar sparsity rates as observed during the validation." @default.
- W4224281305 created "2022-04-26" @default.
- W4224281305 creator A5016946842 @default.
- W4224281305 creator A5043191519 @default.
- W4224281305 creator A5062787992 @default.
- W4224281305 creator A5091750497 @default.
- W4224281305 date "2022-07-01" @default.
- W4224281305 modified "2023-09-26" @default.
- W4224281305 title "Graph neural networks for parameter estimation in micro-electro-mechanical system testing" @default.
- W4224281305 cites W2077461363 @default.
- W4224281305 cites W2116080338 @default.
- W4224281305 cites W2162772535 @default.
- W4224281305 cites W2192336140 @default.
- W4224281305 cites W2283921945 @default.
- W4224281305 cites W2558748708 @default.
- W4224281305 cites W2559930768 @default.
- W4224281305 cites W2895250764 @default.
- W4224281305 cites W3014295050 @default.
- W4224281305 cites W3101073376 @default.
- W4224281305 cites W3152893301 @default.
- W4224281305 cites W4210257598 @default.
- W4224281305 doi "https://doi.org/10.1016/j.array.2022.100162" @default.
- W4224281305 hasPublicationYear "2022" @default.
- W4224281305 type Work @default.
- W4224281305 citedByCount "0" @default.
- W4224281305 crossrefType "journal-article" @default.
- W4224281305 hasAuthorship W4224281305A5016946842 @default.
- W4224281305 hasAuthorship W4224281305A5043191519 @default.
- W4224281305 hasAuthorship W4224281305A5062787992 @default.
- W4224281305 hasAuthorship W4224281305A5091750497 @default.
- W4224281305 hasBestOaLocation W42242813051 @default.
- W4224281305 hasConcept C105795698 @default.
- W4224281305 hasConcept C119857082 @default.
- W4224281305 hasConcept C124101348 @default.
- W4224281305 hasConcept C132525143 @default.
- W4224281305 hasConcept C139945424 @default.
- W4224281305 hasConcept C154945302 @default.
- W4224281305 hasConcept C16910744 @default.
- W4224281305 hasConcept C169258074 @default.
- W4224281305 hasConcept C169903167 @default.
- W4224281305 hasConcept C199360897 @default.
- W4224281305 hasConcept C2776214188 @default.
- W4224281305 hasConcept C33923547 @default.
- W4224281305 hasConcept C41008148 @default.
- W4224281305 hasConcept C46686674 @default.
- W4224281305 hasConcept C50644808 @default.
- W4224281305 hasConcept C70153297 @default.
- W4224281305 hasConcept C80444323 @default.
- W4224281305 hasConceptScore W4224281305C105795698 @default.
- W4224281305 hasConceptScore W4224281305C119857082 @default.
- W4224281305 hasConceptScore W4224281305C124101348 @default.
- W4224281305 hasConceptScore W4224281305C132525143 @default.
- W4224281305 hasConceptScore W4224281305C139945424 @default.
- W4224281305 hasConceptScore W4224281305C154945302 @default.
- W4224281305 hasConceptScore W4224281305C16910744 @default.
- W4224281305 hasConceptScore W4224281305C169258074 @default.
- W4224281305 hasConceptScore W4224281305C169903167 @default.
- W4224281305 hasConceptScore W4224281305C199360897 @default.
- W4224281305 hasConceptScore W4224281305C2776214188 @default.
- W4224281305 hasConceptScore W4224281305C33923547 @default.
- W4224281305 hasConceptScore W4224281305C41008148 @default.
- W4224281305 hasConceptScore W4224281305C46686674 @default.
- W4224281305 hasConceptScore W4224281305C50644808 @default.
- W4224281305 hasConceptScore W4224281305C70153297 @default.
- W4224281305 hasConceptScore W4224281305C80444323 @default.
- W4224281305 hasLocation W42242813051 @default.
- W4224281305 hasOpenAccess W4224281305 @default.
- W4224281305 hasPrimaryLocation W42242813051 @default.
- W4224281305 hasRelatedWork W1425660989 @default.
- W4224281305 hasRelatedWork W1968832299 @default.
- W4224281305 hasRelatedWork W1979006554 @default.
- W4224281305 hasRelatedWork W2037316683 @default.
- W4224281305 hasRelatedWork W2766514146 @default.
- W4224281305 hasRelatedWork W3134125386 @default.
- W4224281305 hasRelatedWork W4280641190 @default.
- W4224281305 hasRelatedWork W4296079469 @default.
- W4224281305 hasRelatedWork W4313488044 @default.
- W4224281305 hasRelatedWork W4379536929 @default.
- W4224281305 hasVolume "14" @default.
- W4224281305 isParatext "false" @default.
- W4224281305 isRetracted "false" @default.
- W4224281305 workType "article" @default.