Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224282610> ?p ?o ?g. }
- W4224282610 endingPage "4832" @default.
- W4224282610 startingPage "4832" @default.
- W4224282610 abstract "With population increases and a vital need for energy, energy systems play an important and decisive role in all of the sectors of society. To accelerate the process and improve the methods of responding to this increase in energy demand, the use of models and algorithms based on artificial intelligence has become common and mandatory. In the present study, a comprehensive and detailed study has been conducted on the methods and applications of Machine Learning (ML) and Deep Learning (DL), which are the newest and most practical models based on Artificial Intelligence (AI) for use in energy systems. It should be noted that due to the development of DL algorithms, which are usually more accurate and less error, the use of these algorithms increases the ability of the model to solve complex problems in this field. In this article, we have tried to examine DL algorithms that are very powerful in problem solving but have received less attention in other studies, such as RNN, ANFIS, RBN, DBN, WNN, and so on. This research uses knowledge discovery in research databases to understand ML and DL applications in energy systems’ current status and future. Subsequently, the critical areas and research gaps are identified. In addition, this study covers the most common and efficient applications used in this field; optimization, forecasting, fault detection, and other applications of energy systems are investigated. Attempts have also been made to cover most of the algorithms and their evaluation metrics, including not only algorithms that are more important, but also newer ones that have received less attention." @default.
- W4224282610 created "2022-04-26" @default.
- W4224282610 creator A5003990461 @default.
- W4224282610 creator A5021019734 @default.
- W4224282610 creator A5025503118 @default.
- W4224282610 creator A5059818374 @default.
- W4224282610 date "2022-04-18" @default.
- W4224282610 modified "2023-10-05" @default.
- W4224282610 title "Machine Learning and Deep Learning in Energy Systems: A Review" @default.
- W4224282610 cites W1124861640 @default.
- W4224282610 cites W1221244578 @default.
- W4224282610 cites W1514832573 @default.
- W4224282610 cites W1584236903 @default.
- W4224282610 cites W1705374184 @default.
- W4224282610 cites W1790870804 @default.
- W4224282610 cites W1973445088 @default.
- W4224282610 cites W1973706763 @default.
- W4224282610 cites W1984061847 @default.
- W4224282610 cites W1984703120 @default.
- W4224282610 cites W1991277158 @default.
- W4224282610 cites W2001105935 @default.
- W4224282610 cites W2011666252 @default.
- W4224282610 cites W2013377700 @default.
- W4224282610 cites W2020835139 @default.
- W4224282610 cites W2028135373 @default.
- W4224282610 cites W2029463080 @default.
- W4224282610 cites W2031118743 @default.
- W4224282610 cites W2038808304 @default.
- W4224282610 cites W2047143310 @default.
- W4224282610 cites W2070534370 @default.
- W4224282610 cites W2089886615 @default.
- W4224282610 cites W2091693228 @default.
- W4224282610 cites W2097751040 @default.
- W4224282610 cites W2111072639 @default.
- W4224282610 cites W2116911268 @default.
- W4224282610 cites W2118207876 @default.
- W4224282610 cites W2135803899 @default.
- W4224282610 cites W2167036165 @default.
- W4224282610 cites W2168577773 @default.
- W4224282610 cites W2187462970 @default.
- W4224282610 cites W2196207709 @default.
- W4224282610 cites W2218112468 @default.
- W4224282610 cites W2287279778 @default.
- W4224282610 cites W2290577225 @default.
- W4224282610 cites W2338227759 @default.
- W4224282610 cites W2344568978 @default.
- W4224282610 cites W2398805137 @default.
- W4224282610 cites W2461825869 @default.
- W4224282610 cites W2473105253 @default.
- W4224282610 cites W2475932179 @default.
- W4224282610 cites W2490223215 @default.
- W4224282610 cites W2515646722 @default.
- W4224282610 cites W2549170467 @default.
- W4224282610 cites W2569349941 @default.
- W4224282610 cites W2592453717 @default.
- W4224282610 cites W2600292797 @default.
- W4224282610 cites W2748617721 @default.
- W4224282610 cites W2751698537 @default.
- W4224282610 cites W2752250962 @default.
- W4224282610 cites W2753141486 @default.
- W4224282610 cites W2754029504 @default.
- W4224282610 cites W2756291343 @default.
- W4224282610 cites W2758741519 @default.
- W4224282610 cites W2760917493 @default.
- W4224282610 cites W2765437974 @default.
- W4224282610 cites W2775155156 @default.
- W4224282610 cites W2780722608 @default.
- W4224282610 cites W2781426785 @default.
- W4224282610 cites W2784125831 @default.
- W4224282610 cites W2790967054 @default.
- W4224282610 cites W2792344217 @default.
- W4224282610 cites W2796855349 @default.
- W4224282610 cites W2801749227 @default.
- W4224282610 cites W2802203651 @default.
- W4224282610 cites W2802465900 @default.
- W4224282610 cites W2809417225 @default.
- W4224282610 cites W2883208472 @default.
- W4224282610 cites W2884486887 @default.
- W4224282610 cites W2888233556 @default.
- W4224282610 cites W2889323772 @default.
- W4224282610 cites W2890324410 @default.
- W4224282610 cites W289033159 @default.
- W4224282610 cites W2891856506 @default.
- W4224282610 cites W2891859208 @default.
- W4224282610 cites W2895868491 @default.
- W4224282610 cites W2895889688 @default.
- W4224282610 cites W2896764759 @default.
- W4224282610 cites W2897070698 @default.
- W4224282610 cites W2901004617 @default.
- W4224282610 cites W2901645090 @default.
- W4224282610 cites W2905528277 @default.
- W4224282610 cites W290561687 @default.
- W4224282610 cites W2910029420 @default.
- W4224282610 cites W2911964244 @default.
- W4224282610 cites W2918257668 @default.
- W4224282610 cites W2921062906 @default.
- W4224282610 cites W2921748836 @default.
- W4224282610 cites W2924189842 @default.