Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224285428> ?p ?o ?g. }
- W4224285428 endingPage "107282" @default.
- W4224285428 startingPage "107282" @default.
- W4224285428 abstract "Only a few studies have focused on the simulation of the crack propagation of quasi-brittle materials under complex loading inspired by physical-informed neural networks (PINN). Guided by the energy minimization principle rather than labelled data, we reconstruct the solution of displacement field after damage to predict crack propagation using PINN which maintains the thermodynamics consistency inherited from our proposed variable four-parameter damage model. Additionally, the framework of incremental pattern performs relatively efficiently with transfer learning. Consequently, a novel method for better convergence based on domain decomposition theory is proposed to identify complex boundaries. Based on gradient pathology, we develop a finite basis algorithm to solve the ill-condition problem. Whether under uniaxial tension, pure shear or mixed mode loading, the prediction results of displacement field fit well with simulations in the literature. Our research is meaningful for improving the generalization of neural networks and accelerating the optimization process which are necessary for further engineering applications." @default.
- W4224285428 created "2022-04-26" @default.
- W4224285428 creator A5002096737 @default.
- W4224285428 creator A5006296853 @default.
- W4224285428 creator A5049926492 @default.
- W4224285428 creator A5058410646 @default.
- W4224285428 creator A5066297371 @default.
- W4224285428 creator A5085206236 @default.
- W4224285428 date "2022-06-01" @default.
- W4224285428 modified "2023-10-15" @default.
- W4224285428 title "Physics-informed machine learning model for computational fracture of quasi-brittle materials without labelled data" @default.
- W4224285428 cites W2018299059 @default.
- W4224285428 cites W2043784721 @default.
- W4224285428 cites W2749028154 @default.
- W4224285428 cites W2890968382 @default.
- W4224285428 cites W2900369848 @default.
- W4224285428 cites W2908541468 @default.
- W4224285428 cites W2982123645 @default.
- W4224285428 cites W2997814214 @default.
- W4224285428 cites W2998847955 @default.
- W4224285428 cites W3002526696 @default.
- W4224285428 cites W3003922491 @default.
- W4224285428 cites W3007631929 @default.
- W4224285428 cites W3015865829 @default.
- W4224285428 cites W3022953487 @default.
- W4224285428 cites W3027712952 @default.
- W4224285428 cites W3028072861 @default.
- W4224285428 cites W3034283940 @default.
- W4224285428 cites W3034540853 @default.
- W4224285428 cites W3087275736 @default.
- W4224285428 cites W3093998008 @default.
- W4224285428 cites W3098546160 @default.
- W4224285428 cites W3111914315 @default.
- W4224285428 cites W3112497018 @default.
- W4224285428 cites W3137392741 @default.
- W4224285428 cites W3139241170 @default.
- W4224285428 cites W3154575637 @default.
- W4224285428 cites W3158348761 @default.
- W4224285428 cites W3170539680 @default.
- W4224285428 cites W3176822632 @default.
- W4224285428 cites W3193131603 @default.
- W4224285428 cites W3195330636 @default.
- W4224285428 cites W3200673624 @default.
- W4224285428 cites W3213201244 @default.
- W4224285428 doi "https://doi.org/10.1016/j.ijmecsci.2022.107282" @default.
- W4224285428 hasPublicationYear "2022" @default.
- W4224285428 type Work @default.
- W4224285428 citedByCount "17" @default.
- W4224285428 countsByYear W42242854282022 @default.
- W4224285428 countsByYear W42242854282023 @default.
- W4224285428 crossrefType "journal-article" @default.
- W4224285428 hasAuthorship W4224285428A5002096737 @default.
- W4224285428 hasAuthorship W4224285428A5006296853 @default.
- W4224285428 hasAuthorship W4224285428A5049926492 @default.
- W4224285428 hasAuthorship W4224285428A5058410646 @default.
- W4224285428 hasAuthorship W4224285428A5066297371 @default.
- W4224285428 hasAuthorship W4224285428A5085206236 @default.
- W4224285428 hasConcept C107551265 @default.
- W4224285428 hasConcept C11413529 @default.
- W4224285428 hasConcept C119857082 @default.
- W4224285428 hasConcept C121332964 @default.
- W4224285428 hasConcept C127413603 @default.
- W4224285428 hasConcept C134306372 @default.
- W4224285428 hasConcept C135628077 @default.
- W4224285428 hasConcept C136478896 @default.
- W4224285428 hasConcept C14961307 @default.
- W4224285428 hasConcept C154945302 @default.
- W4224285428 hasConcept C15744967 @default.
- W4224285428 hasConcept C159985019 @default.
- W4224285428 hasConcept C162324750 @default.
- W4224285428 hasConcept C177148314 @default.
- W4224285428 hasConcept C17744445 @default.
- W4224285428 hasConcept C192562407 @default.
- W4224285428 hasConcept C199539241 @default.
- W4224285428 hasConcept C2776359362 @default.
- W4224285428 hasConcept C2776436953 @default.
- W4224285428 hasConcept C2777303404 @default.
- W4224285428 hasConcept C28826006 @default.
- W4224285428 hasConcept C29660869 @default.
- W4224285428 hasConcept C33923547 @default.
- W4224285428 hasConcept C41008148 @default.
- W4224285428 hasConcept C43369102 @default.
- W4224285428 hasConcept C50522688 @default.
- W4224285428 hasConcept C50644808 @default.
- W4224285428 hasConcept C542102704 @default.
- W4224285428 hasConcept C59085676 @default.
- W4224285428 hasConcept C62520636 @default.
- W4224285428 hasConcept C66938386 @default.
- W4224285428 hasConcept C94625758 @default.
- W4224285428 hasConceptScore W4224285428C107551265 @default.
- W4224285428 hasConceptScore W4224285428C11413529 @default.
- W4224285428 hasConceptScore W4224285428C119857082 @default.
- W4224285428 hasConceptScore W4224285428C121332964 @default.
- W4224285428 hasConceptScore W4224285428C127413603 @default.
- W4224285428 hasConceptScore W4224285428C134306372 @default.
- W4224285428 hasConceptScore W4224285428C135628077 @default.
- W4224285428 hasConceptScore W4224285428C136478896 @default.
- W4224285428 hasConceptScore W4224285428C14961307 @default.