Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224285632> ?p ?o ?g. }
- W4224285632 abstract "We analyzed the invariant mass spectrum of near-threshold exotic states for one-channel candidates with a deep neural network. It can extract the scattering length and effective range, which would shed light on the nature of given states, from the experimental mass spectrum. As an application, the mass spectrum of the $X(3872)$ and the $T_{cc}^+$ are studied. The obtained scattering lengths, effective ranges, and most relevant thresholds are consistent with those from fitting to the experimental data. The advantage of the neural network is that it is more stable than the fitting, especially for low-statistic data. The network, which provides another way to analyze the experimental data, can also be applied to other one-channel near-threshold exotic candidates." @default.
- W4224285632 created "2022-04-26" @default.
- W4224285632 creator A5002418668 @default.
- W4224285632 creator A5025866712 @default.
- W4224285632 creator A5065676828 @default.
- W4224285632 creator A5089710715 @default.
- W4224285632 date "2022-04-20" @default.
- W4224285632 modified "2023-10-06" @default.
- W4224285632 title "Study of exotic hadrons with machine learning" @default.
- W4224285632 cites W1976992052 @default.
- W4224285632 cites W1989512339 @default.
- W4224285632 cites W2002364198 @default.
- W4224285632 cites W2008184064 @default.
- W4224285632 cites W2010478558 @default.
- W4224285632 cites W2015847044 @default.
- W4224285632 cites W2049766569 @default.
- W4224285632 cites W2053128433 @default.
- W4224285632 cites W2091085232 @default.
- W4224285632 cites W2153636583 @default.
- W4224285632 cites W2170318505 @default.
- W4224285632 cites W2526963220 @default.
- W4224285632 cites W2532129306 @default.
- W4224285632 cites W2579638372 @default.
- W4224285632 cites W2767690264 @default.
- W4224285632 cites W2925082381 @default.
- W4224285632 cites W3014045057 @default.
- W4224285632 cites W3024330808 @default.
- W4224285632 cites W3027321527 @default.
- W4224285632 cites W3029593891 @default.
- W4224285632 cites W3037016282 @default.
- W4224285632 cites W3037535525 @default.
- W4224285632 cites W3098169834 @default.
- W4224285632 cites W3102895099 @default.
- W4224285632 cites W3103589963 @default.
- W4224285632 cites W3104513209 @default.
- W4224285632 cites W3135219787 @default.
- W4224285632 cites W3139125205 @default.
- W4224285632 cites W3154865347 @default.
- W4224285632 cites W3163604108 @default.
- W4224285632 cites W3170512825 @default.
- W4224285632 cites W3198679941 @default.
- W4224285632 cites W3211031145 @default.
- W4224285632 cites W3217739519 @default.
- W4224285632 cites W4213011768 @default.
- W4224285632 cites W4250041251 @default.
- W4224285632 doi "https://doi.org/10.1103/physrevd.105.076013" @default.
- W4224285632 hasPublicationYear "2022" @default.
- W4224285632 type Work @default.
- W4224285632 citedByCount "3" @default.
- W4224285632 countsByYear W42242856322022 @default.
- W4224285632 countsByYear W42242856322023 @default.
- W4224285632 crossrefType "journal-article" @default.
- W4224285632 hasAuthorship W4224285632A5002418668 @default.
- W4224285632 hasAuthorship W4224285632A5025866712 @default.
- W4224285632 hasAuthorship W4224285632A5065676828 @default.
- W4224285632 hasAuthorship W4224285632A5089710715 @default.
- W4224285632 hasBestOaLocation W42242856321 @default.
- W4224285632 hasConcept C105795698 @default.
- W4224285632 hasConcept C109214941 @default.
- W4224285632 hasConcept C120665830 @default.
- W4224285632 hasConcept C121332964 @default.
- W4224285632 hasConcept C121864883 @default.
- W4224285632 hasConcept C127162648 @default.
- W4224285632 hasConcept C151987854 @default.
- W4224285632 hasConcept C154945302 @default.
- W4224285632 hasConcept C156778621 @default.
- W4224285632 hasConcept C159985019 @default.
- W4224285632 hasConcept C190470478 @default.
- W4224285632 hasConcept C191486275 @default.
- W4224285632 hasConcept C192562407 @default.
- W4224285632 hasConcept C19694890 @default.
- W4224285632 hasConcept C204323151 @default.
- W4224285632 hasConcept C30475298 @default.
- W4224285632 hasConcept C33923547 @default.
- W4224285632 hasConcept C41008148 @default.
- W4224285632 hasConcept C48264206 @default.
- W4224285632 hasConcept C50644808 @default.
- W4224285632 hasConcept C62520636 @default.
- W4224285632 hasConcept C76155785 @default.
- W4224285632 hasConcept C89128539 @default.
- W4224285632 hasConceptScore W4224285632C105795698 @default.
- W4224285632 hasConceptScore W4224285632C109214941 @default.
- W4224285632 hasConceptScore W4224285632C120665830 @default.
- W4224285632 hasConceptScore W4224285632C121332964 @default.
- W4224285632 hasConceptScore W4224285632C121864883 @default.
- W4224285632 hasConceptScore W4224285632C127162648 @default.
- W4224285632 hasConceptScore W4224285632C151987854 @default.
- W4224285632 hasConceptScore W4224285632C154945302 @default.
- W4224285632 hasConceptScore W4224285632C156778621 @default.
- W4224285632 hasConceptScore W4224285632C159985019 @default.
- W4224285632 hasConceptScore W4224285632C190470478 @default.
- W4224285632 hasConceptScore W4224285632C191486275 @default.
- W4224285632 hasConceptScore W4224285632C192562407 @default.
- W4224285632 hasConceptScore W4224285632C19694890 @default.
- W4224285632 hasConceptScore W4224285632C204323151 @default.
- W4224285632 hasConceptScore W4224285632C30475298 @default.
- W4224285632 hasConceptScore W4224285632C33923547 @default.
- W4224285632 hasConceptScore W4224285632C41008148 @default.
- W4224285632 hasConceptScore W4224285632C48264206 @default.
- W4224285632 hasConceptScore W4224285632C50644808 @default.