Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224291281> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4224291281 endingPage "93" @default.
- W4224291281 startingPage "78" @default.
- W4224291281 abstract "Recently, there has been increased adoption of automation technologies in production facilities that help to curb mistakes, increase production speed and consistency, and reduce costs. Industrial automation owes its success to the advent of capable computers, smart algorithms, and data availability. In the modern-day slaughterhouse, automation technologies have been employed for operations such as cutting, deboning, grading. As one of the vital operations in the slaughterhouse, carcass grading is usually completed manually by grading staff, which is a bottleneck for production speed and consistency. However, due to the complexity of the problem, most of the technologies available for carcass grading suffer from low performance. This study aims to develop an image-analysis system that uses deep-learning tools for the prediction of key beef yield parameters. The image data collected from the carcass samples were used to develop deep-learning models that extract key features, which were then used to model and predict 23 beef carcass yield parameters using multiple linear regression. The models developed achieved good prediction performance for yield parameters such as lean meat percentage (with R2 = 0.90, RMSE = 1.98%) and other yield parameters using a few selected features. The results from this study can be used as a foundation for developing an online beef carcass grading system." @default.
- W4224291281 created "2022-04-26" @default.
- W4224291281 creator A5031819340 @default.
- W4224291281 creator A5033584944 @default.
- W4224291281 creator A5034671201 @default.
- W4224291281 creator A5054252531 @default.
- W4224291281 creator A5064164932 @default.
- W4224291281 creator A5074754246 @default.
- W4224291281 creator A5076664056 @default.
- W4224291281 date "2022-06-01" @default.
- W4224291281 modified "2023-10-16" @default.
- W4224291281 title "Deep learning feature extraction for image-based beef carcass yield estimation" @default.
- W4224291281 cites W1852553807 @default.
- W4224291281 cites W1997788848 @default.
- W4224291281 cites W2014915963 @default.
- W4224291281 cites W2033808306 @default.
- W4224291281 cites W2052371080 @default.
- W4224291281 cites W2155185512 @default.
- W4224291281 cites W2167667767 @default.
- W4224291281 cites W2188006904 @default.
- W4224291281 cites W2412782625 @default.
- W4224291281 cites W2417343038 @default.
- W4224291281 cites W2584923503 @default.
- W4224291281 cites W2770512244 @default.
- W4224291281 cites W2902091588 @default.
- W4224291281 cites W2917275324 @default.
- W4224291281 cites W2919115771 @default.
- W4224291281 cites W2940612399 @default.
- W4224291281 cites W2963881378 @default.
- W4224291281 cites W3015774841 @default.
- W4224291281 cites W3098900881 @default.
- W4224291281 cites W3113224898 @default.
- W4224291281 cites W3113608837 @default.
- W4224291281 cites W3199593493 @default.
- W4224291281 doi "https://doi.org/10.1016/j.biosystemseng.2022.04.008" @default.
- W4224291281 hasPublicationYear "2022" @default.
- W4224291281 type Work @default.
- W4224291281 citedByCount "3" @default.
- W4224291281 countsByYear W42242912812022 @default.
- W4224291281 countsByYear W42242912812023 @default.
- W4224291281 crossrefType "journal-article" @default.
- W4224291281 hasAuthorship W4224291281A5031819340 @default.
- W4224291281 hasAuthorship W4224291281A5033584944 @default.
- W4224291281 hasAuthorship W4224291281A5034671201 @default.
- W4224291281 hasAuthorship W4224291281A5054252531 @default.
- W4224291281 hasAuthorship W4224291281A5064164932 @default.
- W4224291281 hasAuthorship W4224291281A5074754246 @default.
- W4224291281 hasAuthorship W4224291281A5076664056 @default.
- W4224291281 hasConcept C115901376 @default.
- W4224291281 hasConcept C127413603 @default.
- W4224291281 hasConcept C147176958 @default.
- W4224291281 hasConcept C21547014 @default.
- W4224291281 hasConcept C2777286243 @default.
- W4224291281 hasConcept C2780513914 @default.
- W4224291281 hasConcept C41008148 @default.
- W4224291281 hasConcept C78519656 @default.
- W4224291281 hasConceptScore W4224291281C115901376 @default.
- W4224291281 hasConceptScore W4224291281C127413603 @default.
- W4224291281 hasConceptScore W4224291281C147176958 @default.
- W4224291281 hasConceptScore W4224291281C21547014 @default.
- W4224291281 hasConceptScore W4224291281C2777286243 @default.
- W4224291281 hasConceptScore W4224291281C2780513914 @default.
- W4224291281 hasConceptScore W4224291281C41008148 @default.
- W4224291281 hasConceptScore W4224291281C78519656 @default.
- W4224291281 hasFunder F4320322035 @default.
- W4224291281 hasLocation W42242912811 @default.
- W4224291281 hasOpenAccess W4224291281 @default.
- W4224291281 hasPrimaryLocation W42242912811 @default.
- W4224291281 hasRelatedWork W2354251581 @default.
- W4224291281 hasRelatedWork W2357325779 @default.
- W4224291281 hasRelatedWork W2357461155 @default.
- W4224291281 hasRelatedWork W2374412966 @default.
- W4224291281 hasRelatedWork W2384129116 @default.
- W4224291281 hasRelatedWork W2387410617 @default.
- W4224291281 hasRelatedWork W2766721049 @default.
- W4224291281 hasRelatedWork W2899084033 @default.
- W4224291281 hasRelatedWork W3145924829 @default.
- W4224291281 hasRelatedWork W4285900220 @default.
- W4224291281 hasVolume "218" @default.
- W4224291281 isParatext "false" @default.
- W4224291281 isRetracted "false" @default.
- W4224291281 workType "article" @default.