Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224294306> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4224294306 abstract "We find the local form of all non-closed Lorentzian Weyl manifolds $(M,c,nabla)$ with recurrent curvature tensor.If the dimension of the manifold is greater than 3, then the conformal structure is flat, and the recurrent Weyl structure is locally determined by a single function. Two local structures are equivalent if and only if the corresponding functions are related by a transformation from $mathrm{SAff}_1(mathbb{R}) times mathrm{PSL}_2(mathbb{R}) times mathbb{Z}_2$. We find generators for the field of rational scalar differential invariants of this Lie group action. The global structure of the manifold $M$ may be described in terms of a foliation with a transversal projective structure. It is shown that all locally homogeneous structures are locally equivalent, and there is only one simply connected homogeneous non-closed recurrent Lorentzian Weyl manifold. Moreover, there are 5 classes of cohomogeneity-one spaces, and all other spaces are of cohomogeneity-two. If $dim M=3$, the non-closed recurrent Lorentzian Weyl structures are locally determined by one function of two variables or two functions of one variables, depending on whether its holonomy algebra is 1- or 2-dimensional. In this case, two structures with the same holonomy algebra are locally equivalent if and only if they are related, respectively, by a transformation from an infinite-dimensional Lie pseudogroup or a 4-dimensional subgroup of $mathrm{Aff}(mathbb R^3)$. Again we provide generators for the field of rational differential invariants. We find a local expression for the locally homogeneous non-closed recurrent Lorentzian Weyl manifolds of dimension 3, and also of those of cohomogeneity one and two. In the end we give a local description of the non-closed recurrent Lorentzian Weyl manifolds that are also Einstein-Weyl. All of them are 3-dimensional and have a 2-dimensional holonomy algebra." @default.
- W4224294306 created "2022-04-26" @default.
- W4224294306 creator A5028117465 @default.
- W4224294306 creator A5089240744 @default.
- W4224294306 date "2022-04-21" @default.
- W4224294306 modified "2023-10-05" @default.
- W4224294306 title "Recurrent Lorentzian Weyl spaces" @default.
- W4224294306 doi "https://doi.org/10.48550/arxiv.2204.10163" @default.
- W4224294306 hasPublicationYear "2022" @default.
- W4224294306 type Work @default.
- W4224294306 citedByCount "0" @default.
- W4224294306 crossrefType "posted-content" @default.
- W4224294306 hasAuthorship W4224294306A5028117465 @default.
- W4224294306 hasAuthorship W4224294306A5089240744 @default.
- W4224294306 hasBestOaLocation W42242943061 @default.
- W4224294306 hasConcept C127313418 @default.
- W4224294306 hasConcept C127413603 @default.
- W4224294306 hasConcept C134306372 @default.
- W4224294306 hasConcept C168425004 @default.
- W4224294306 hasConcept C17409809 @default.
- W4224294306 hasConcept C187915474 @default.
- W4224294306 hasConcept C18903297 @default.
- W4224294306 hasConcept C202444582 @default.
- W4224294306 hasConcept C26687426 @default.
- W4224294306 hasConcept C2777299769 @default.
- W4224294306 hasConcept C32518243 @default.
- W4224294306 hasConcept C33923547 @default.
- W4224294306 hasConcept C51568863 @default.
- W4224294306 hasConcept C529865628 @default.
- W4224294306 hasConcept C78519656 @default.
- W4224294306 hasConcept C86803240 @default.
- W4224294306 hasConcept C98214594 @default.
- W4224294306 hasConceptScore W4224294306C127313418 @default.
- W4224294306 hasConceptScore W4224294306C127413603 @default.
- W4224294306 hasConceptScore W4224294306C134306372 @default.
- W4224294306 hasConceptScore W4224294306C168425004 @default.
- W4224294306 hasConceptScore W4224294306C17409809 @default.
- W4224294306 hasConceptScore W4224294306C187915474 @default.
- W4224294306 hasConceptScore W4224294306C18903297 @default.
- W4224294306 hasConceptScore W4224294306C202444582 @default.
- W4224294306 hasConceptScore W4224294306C26687426 @default.
- W4224294306 hasConceptScore W4224294306C2777299769 @default.
- W4224294306 hasConceptScore W4224294306C32518243 @default.
- W4224294306 hasConceptScore W4224294306C33923547 @default.
- W4224294306 hasConceptScore W4224294306C51568863 @default.
- W4224294306 hasConceptScore W4224294306C529865628 @default.
- W4224294306 hasConceptScore W4224294306C78519656 @default.
- W4224294306 hasConceptScore W4224294306C86803240 @default.
- W4224294306 hasConceptScore W4224294306C98214594 @default.
- W4224294306 hasLocation W42242943061 @default.
- W4224294306 hasOpenAccess W4224294306 @default.
- W4224294306 hasPrimaryLocation W42242943061 @default.
- W4224294306 hasRelatedWork W2087734572 @default.
- W4224294306 hasRelatedWork W2936403155 @default.
- W4224294306 hasRelatedWork W2950847755 @default.
- W4224294306 hasRelatedWork W2952425145 @default.
- W4224294306 hasRelatedWork W2962804100 @default.
- W4224294306 hasRelatedWork W4212926284 @default.
- W4224294306 hasRelatedWork W4230292203 @default.
- W4224294306 hasRelatedWork W4288366121 @default.
- W4224294306 hasRelatedWork W4299322318 @default.
- W4224294306 hasRelatedWork W4299572543 @default.
- W4224294306 isParatext "false" @default.
- W4224294306 isRetracted "false" @default.
- W4224294306 workType "article" @default.