Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224294648> ?p ?o ?g. }
- W4224294648 endingPage "1318" @default.
- W4224294648 startingPage "1318" @default.
- W4224294648 abstract "Rainfall-runoff modeling in ungauged basins continues to be a great hydrological research challenge. A novel approach is the Long-Short-Term-Memory neural network (LSTM) from the Deep Learning toolbox, which few works have addressed its use for rainfall-runoff regionalization. This work aims to discuss the application of LSTM as a regional method against traditional neural network (FFNN) and conceptual models in a practical framework with adverse conditions: reduced data availability, shallow soil catchments with semiarid climate, and monthly time step. For this, the watersheds chosen were located on State of Ceará, Northeast Brazil. For streamflow regionalization, both LSTM and FFNN were better than the hydrological model used as benchmark, however, the FFNN were quite superior. The neural network methods also showed the ability to aggregate process understanding from different watersheds as the performance of the neural networks trained with the regionalization data were better with the neural networks trained for single catchments." @default.
- W4224294648 created "2022-04-26" @default.
- W4224294648 creator A5003633841 @default.
- W4224294648 creator A5013694505 @default.
- W4224294648 creator A5030751770 @default.
- W4224294648 creator A5051684769 @default.
- W4224294648 creator A5074074598 @default.
- W4224294648 creator A5080941347 @default.
- W4224294648 date "2022-04-19" @default.
- W4224294648 modified "2023-10-02" @default.
- W4224294648 title "Deep Learning for Streamflow Regionalization for Ungauged Basins: Application of Long-Short-Term-Memory Cells in Semiarid Regions" @default.
- W4224294648 cites W1576008153 @default.
- W4224294648 cites W1977314763 @default.
- W4224294648 cites W1977645027 @default.
- W4224294648 cites W1983860987 @default.
- W4224294648 cites W1993195831 @default.
- W4224294648 cites W1995341919 @default.
- W4224294648 cites W1996309381 @default.
- W4224294648 cites W2015789609 @default.
- W4224294648 cites W2017618012 @default.
- W4224294648 cites W2018281657 @default.
- W4224294648 cites W2045944858 @default.
- W4224294648 cites W2048069199 @default.
- W4224294648 cites W2064675550 @default.
- W4224294648 cites W2064680444 @default.
- W4224294648 cites W2067223893 @default.
- W4224294648 cites W2069143585 @default.
- W4224294648 cites W2080663696 @default.
- W4224294648 cites W2101706954 @default.
- W4224294648 cites W2110485445 @default.
- W4224294648 cites W2117355623 @default.
- W4224294648 cites W2129617701 @default.
- W4224294648 cites W2143426320 @default.
- W4224294648 cites W2145635192 @default.
- W4224294648 cites W2147095229 @default.
- W4224294648 cites W2165374536 @default.
- W4224294648 cites W2169915027 @default.
- W4224294648 cites W2286881062 @default.
- W4224294648 cites W2289643978 @default.
- W4224294648 cites W2334984159 @default.
- W4224294648 cites W2393256061 @default.
- W4224294648 cites W2550460597 @default.
- W4224294648 cites W2572622164 @default.
- W4224294648 cites W2603766970 @default.
- W4224294648 cites W2792521251 @default.
- W4224294648 cites W2800819102 @default.
- W4224294648 cites W2898791292 @default.
- W4224294648 cites W2924062633 @default.
- W4224294648 cites W2949562060 @default.
- W4224294648 cites W2998268303 @default.
- W4224294648 cites W2999092792 @default.
- W4224294648 cites W3019038702 @default.
- W4224294648 cites W3046457451 @default.
- W4224294648 cites W3106370744 @default.
- W4224294648 cites W3173235060 @default.
- W4224294648 cites W3202254272 @default.
- W4224294648 cites W88454348 @default.
- W4224294648 doi "https://doi.org/10.3390/w14091318" @default.
- W4224294648 hasPublicationYear "2022" @default.
- W4224294648 type Work @default.
- W4224294648 citedByCount "6" @default.
- W4224294648 countsByYear W42242946482022 @default.
- W4224294648 countsByYear W42242946482023 @default.
- W4224294648 crossrefType "journal-article" @default.
- W4224294648 hasAuthorship W4224294648A5003633841 @default.
- W4224294648 hasAuthorship W4224294648A5013694505 @default.
- W4224294648 hasAuthorship W4224294648A5030751770 @default.
- W4224294648 hasAuthorship W4224294648A5051684769 @default.
- W4224294648 hasAuthorship W4224294648A5074074598 @default.
- W4224294648 hasAuthorship W4224294648A5080941347 @default.
- W4224294648 hasBestOaLocation W42242946481 @default.
- W4224294648 hasConcept C126645576 @default.
- W4224294648 hasConcept C127313418 @default.
- W4224294648 hasConcept C154945302 @default.
- W4224294648 hasConcept C185798385 @default.
- W4224294648 hasConcept C187320778 @default.
- W4224294648 hasConcept C18903297 @default.
- W4224294648 hasConcept C199360897 @default.
- W4224294648 hasConcept C205649164 @default.
- W4224294648 hasConcept C2777655017 @default.
- W4224294648 hasConcept C39432304 @default.
- W4224294648 hasConcept C41008148 @default.
- W4224294648 hasConcept C50477045 @default.
- W4224294648 hasConcept C50644808 @default.
- W4224294648 hasConcept C53739315 @default.
- W4224294648 hasConcept C58640448 @default.
- W4224294648 hasConcept C76886044 @default.
- W4224294648 hasConcept C86803240 @default.
- W4224294648 hasConceptScore W4224294648C126645576 @default.
- W4224294648 hasConceptScore W4224294648C127313418 @default.
- W4224294648 hasConceptScore W4224294648C154945302 @default.
- W4224294648 hasConceptScore W4224294648C185798385 @default.
- W4224294648 hasConceptScore W4224294648C187320778 @default.
- W4224294648 hasConceptScore W4224294648C18903297 @default.
- W4224294648 hasConceptScore W4224294648C199360897 @default.
- W4224294648 hasConceptScore W4224294648C205649164 @default.
- W4224294648 hasConceptScore W4224294648C2777655017 @default.
- W4224294648 hasConceptScore W4224294648C39432304 @default.