Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224294961> ?p ?o ?g. }
- W4224294961 endingPage "108543" @default.
- W4224294961 startingPage "108543" @default.
- W4224294961 abstract "Background effect is a crucial limitation for the monitoring of leaf nitrogen concentration (LNC) in crops with unmanned aerial vehicle (UAV) multispectral imagery. Some background removal approaches have been developed for improve the estimation of LNC, but their performances are not compared in one study and it is unclear whether they are sensitive to the observation time of UAV imagery. This study evaluated three background removal approaches, i.e., the soil-adjusted vegetation index (SAVI) approach, the green pixel vegetation index approach (GPVI) and abundance adjusted vegetation index (AAVI), for estimating rice LNC from UAV-based multispectral imagery at individual and across growth stages as well as different observation times of the day. The red edge chlorophyll index (CIre) was chosen as the common basis for the last two approaches. In particular, the AAVI approach was refined with a higher number of endmembers and automated endmember extraction, and further evaluated for assessing the effect of separating sunlit components from shaded components of the canopy. Our results demonstrated that the vegetation indices (VIs) for off-noon observation times showed better relationships with LNC than those for noon at individual and across growth stages. Compared to both SAVI and CIre-green, the AACIre for all pixels (AACIre-all) exhibited the weakest sensitivity to observation time and yielded the best relationships for single-stage (jointing: r2=0.70, booting: r2=0.76, heading: r2=0.70) and across-stage (r2=0.66) models. Among the AAVIs derived from three categories of pixels, the AACIre-sunlit (R2 =0.90, RMSE=0.17%, Bias=0.03%) outperformed AACIre-all (R2 =0.85, RMSE=0.23%, Bias=0.08%) and then AACIre-shaded (R2 =0.38, RMSE=0.49%, Bias=0.40%) remarkably for the estimation accuracy of LNC. This study suggests that the refined AAVI approach has great value in reducing the background effect for more accurate monitoring of growth parameters and could be extended to other crops and regions for improved precision crop management and field-based high-throughput phenotyping." @default.
- W4224294961 created "2022-04-26" @default.
- W4224294961 creator A5000071336 @default.
- W4224294961 creator A5006852120 @default.
- W4224294961 creator A5017022122 @default.
- W4224294961 creator A5032533121 @default.
- W4224294961 creator A5065229969 @default.
- W4224294961 creator A5081529546 @default.
- W4224294961 creator A5086214190 @default.
- W4224294961 date "2022-07-01" @default.
- W4224294961 modified "2023-10-12" @default.
- W4224294961 title "An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times" @default.
- W4224294961 cites W1645247723 @default.
- W4224294961 cites W1963877931 @default.
- W4224294961 cites W1964217023 @default.
- W4224294961 cites W1967476626 @default.
- W4224294961 cites W1969356275 @default.
- W4224294961 cites W1976911681 @default.
- W4224294961 cites W1985673221 @default.
- W4224294961 cites W1986930621 @default.
- W4224294961 cites W1987192984 @default.
- W4224294961 cites W1988604831 @default.
- W4224294961 cites W1999123671 @default.
- W4224294961 cites W2014555541 @default.
- W4224294961 cites W2015613423 @default.
- W4224294961 cites W2016239143 @default.
- W4224294961 cites W2016435228 @default.
- W4224294961 cites W2017050504 @default.
- W4224294961 cites W2019990444 @default.
- W4224294961 cites W2026332487 @default.
- W4224294961 cites W2032665686 @default.
- W4224294961 cites W2036538049 @default.
- W4224294961 cites W2041202606 @default.
- W4224294961 cites W2043058103 @default.
- W4224294961 cites W2052906539 @default.
- W4224294961 cites W2059710713 @default.
- W4224294961 cites W2084236720 @default.
- W4224294961 cites W2098281478 @default.
- W4224294961 cites W2100903394 @default.
- W4224294961 cites W2109404357 @default.
- W4224294961 cites W2129483042 @default.
- W4224294961 cites W2133802438 @default.
- W4224294961 cites W2138708888 @default.
- W4224294961 cites W2149832966 @default.
- W4224294961 cites W2202464059 @default.
- W4224294961 cites W2281193004 @default.
- W4224294961 cites W2491477437 @default.
- W4224294961 cites W2551562355 @default.
- W4224294961 cites W2595754769 @default.
- W4224294961 cites W2621112468 @default.
- W4224294961 cites W2626613115 @default.
- W4224294961 cites W2740639889 @default.
- W4224294961 cites W2804616917 @default.
- W4224294961 cites W2808198652 @default.
- W4224294961 cites W2810045919 @default.
- W4224294961 cites W2886663907 @default.
- W4224294961 cites W2889339523 @default.
- W4224294961 cites W2889648359 @default.
- W4224294961 cites W2891621712 @default.
- W4224294961 cites W2937578908 @default.
- W4224294961 cites W2965906999 @default.
- W4224294961 cites W2969789557 @default.
- W4224294961 cites W2993884728 @default.
- W4224294961 cites W3007304305 @default.
- W4224294961 cites W3011105383 @default.
- W4224294961 cites W3042854295 @default.
- W4224294961 cites W3092263277 @default.
- W4224294961 cites W3098958405 @default.
- W4224294961 cites W3112929969 @default.
- W4224294961 cites W3123685232 @default.
- W4224294961 cites W3133005711 @default.
- W4224294961 cites W3146990693 @default.
- W4224294961 cites W3166542244 @default.
- W4224294961 cites W3166866928 @default.
- W4224294961 doi "https://doi.org/10.1016/j.fcr.2022.108543" @default.
- W4224294961 hasPublicationYear "2022" @default.
- W4224294961 type Work @default.
- W4224294961 citedByCount "12" @default.
- W4224294961 countsByYear W42242949612022 @default.
- W4224294961 countsByYear W42242949612023 @default.
- W4224294961 crossrefType "journal-article" @default.
- W4224294961 hasAuthorship W4224294961A5000071336 @default.
- W4224294961 hasAuthorship W4224294961A5006852120 @default.
- W4224294961 hasAuthorship W4224294961A5017022122 @default.
- W4224294961 hasAuthorship W4224294961A5032533121 @default.
- W4224294961 hasAuthorship W4224294961A5065229969 @default.
- W4224294961 hasAuthorship W4224294961A5081529546 @default.
- W4224294961 hasAuthorship W4224294961A5086214190 @default.
- W4224294961 hasConcept C101000010 @default.
- W4224294961 hasConcept C127313418 @default.
- W4224294961 hasConcept C142724271 @default.
- W4224294961 hasConcept C1549246 @default.
- W4224294961 hasConcept C154945302 @default.
- W4224294961 hasConcept C160633673 @default.
- W4224294961 hasConcept C173163844 @default.
- W4224294961 hasConcept C18903297 @default.
- W4224294961 hasConcept C205649164 @default.
- W4224294961 hasConcept C25989453 @default.