Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224297054> ?p ?o ?g. }
- W4224297054 endingPage "1294" @default.
- W4224297054 startingPage "1294" @default.
- W4224297054 abstract "Although many efforts have been made through past years, skin cancer recognition from medical images is still an active area of research aiming at more accurate results. Many efforts have been made in recent years based on deep learning neural networks. Only a few, however, are based on a single deep learning model and targeted to create a mobile application. Contributing to both efforts, first we present a summary of the required medical knowledge on skin cancer, followed by an extensive summary of the most recent related works. Afterwards, we present 11 CNN (convolutional neural network) candidate single architectures. We train and test those 11 CNN architectures, using the HAM10000 dataset, concerning seven skin lesion classes. To face the imbalance problem and the high similarity between images of some skin lesions, we apply data augmentation (during training), transfer learning and fine-tuning. From the 11 CNN architecture configurations, DenseNet169 produced the best results. It achieved an accuracy of 92.25%, a recall (sensitivity) of 93.59% and an F1-score of 93.27%, which outperforms existing state-of-the-art efforts. We used a light version of DenseNet169 in constructing a mobile android application, which was mapped as a two-class model (benign or malignant). A picture is taken via the mobile device camera, and after manual cropping, it is classified into benign or malignant type. The application can also inform the user about the allowed sun exposition time based on the current UV radiation degree, the phototype of the user’s skin and the degree of the used sunscreen. In conclusion, we achieved state-of-the-art results in skin cancer recognition based on a single, relatively light deep learning model, which we also used in a mobile application." @default.
- W4224297054 created "2022-04-26" @default.
- W4224297054 creator A5013111055 @default.
- W4224297054 creator A5013384377 @default.
- W4224297054 creator A5046246683 @default.
- W4224297054 creator A5057523671 @default.
- W4224297054 date "2022-04-19" @default.
- W4224297054 modified "2023-10-18" @default.
- W4224297054 title "Deep Learning Methods for Accurate Skin Cancer Recognition and Mobile Application" @default.
- W4224297054 cites W2035580331 @default.
- W4224297054 cites W2108598243 @default.
- W4224297054 cites W2170505850 @default.
- W4224297054 cites W2194775991 @default.
- W4224297054 cites W2581082771 @default.
- W4224297054 cites W2592160412 @default.
- W4224297054 cites W2612806369 @default.
- W4224297054 cites W2618530766 @default.
- W4224297054 cites W2786147899 @default.
- W4224297054 cites W2788686457 @default.
- W4224297054 cites W2806853752 @default.
- W4224297054 cites W2809598685 @default.
- W4224297054 cites W2887280559 @default.
- W4224297054 cites W2914959431 @default.
- W4224297054 cites W2919115771 @default.
- W4224297054 cites W2922703796 @default.
- W4224297054 cites W2945587898 @default.
- W4224297054 cites W2953576016 @default.
- W4224297054 cites W2953747367 @default.
- W4224297054 cites W2962839655 @default.
- W4224297054 cites W2963446712 @default.
- W4224297054 cites W2994842153 @default.
- W4224297054 cites W2999452573 @default.
- W4224297054 cites W3001669684 @default.
- W4224297054 cites W3012614932 @default.
- W4224297054 cites W3014613513 @default.
- W4224297054 cites W3018821700 @default.
- W4224297054 cites W3088606772 @default.
- W4224297054 cites W3094329596 @default.
- W4224297054 cites W3101344540 @default.
- W4224297054 cites W3102443681 @default.
- W4224297054 cites W3102785203 @default.
- W4224297054 cites W3102796228 @default.
- W4224297054 cites W3114236412 @default.
- W4224297054 cites W3118471509 @default.
- W4224297054 cites W3156313549 @default.
- W4224297054 cites W3209099848 @default.
- W4224297054 cites W3209862341 @default.
- W4224297054 cites W4226093144 @default.
- W4224297054 doi "https://doi.org/10.3390/electronics11091294" @default.
- W4224297054 hasPublicationYear "2022" @default.
- W4224297054 type Work @default.
- W4224297054 citedByCount "20" @default.
- W4224297054 countsByYear W42242970542022 @default.
- W4224297054 countsByYear W42242970542023 @default.
- W4224297054 crossrefType "journal-article" @default.
- W4224297054 hasAuthorship W4224297054A5013111055 @default.
- W4224297054 hasAuthorship W4224297054A5013384377 @default.
- W4224297054 hasAuthorship W4224297054A5046246683 @default.
- W4224297054 hasAuthorship W4224297054A5057523671 @default.
- W4224297054 hasBestOaLocation W42242970541 @default.
- W4224297054 hasConcept C108583219 @default.
- W4224297054 hasConcept C111919701 @default.
- W4224297054 hasConcept C119857082 @default.
- W4224297054 hasConcept C121608353 @default.
- W4224297054 hasConcept C126322002 @default.
- W4224297054 hasConcept C150899416 @default.
- W4224297054 hasConcept C153180895 @default.
- W4224297054 hasConcept C154945302 @default.
- W4224297054 hasConcept C16005928 @default.
- W4224297054 hasConcept C186967261 @default.
- W4224297054 hasConcept C2777789703 @default.
- W4224297054 hasConcept C2988168687 @default.
- W4224297054 hasConcept C41008148 @default.
- W4224297054 hasConcept C71924100 @default.
- W4224297054 hasConcept C81363708 @default.
- W4224297054 hasConceptScore W4224297054C108583219 @default.
- W4224297054 hasConceptScore W4224297054C111919701 @default.
- W4224297054 hasConceptScore W4224297054C119857082 @default.
- W4224297054 hasConceptScore W4224297054C121608353 @default.
- W4224297054 hasConceptScore W4224297054C126322002 @default.
- W4224297054 hasConceptScore W4224297054C150899416 @default.
- W4224297054 hasConceptScore W4224297054C153180895 @default.
- W4224297054 hasConceptScore W4224297054C154945302 @default.
- W4224297054 hasConceptScore W4224297054C16005928 @default.
- W4224297054 hasConceptScore W4224297054C186967261 @default.
- W4224297054 hasConceptScore W4224297054C2777789703 @default.
- W4224297054 hasConceptScore W4224297054C2988168687 @default.
- W4224297054 hasConceptScore W4224297054C41008148 @default.
- W4224297054 hasConceptScore W4224297054C71924100 @default.
- W4224297054 hasConceptScore W4224297054C81363708 @default.
- W4224297054 hasIssue "9" @default.
- W4224297054 hasLocation W42242970541 @default.
- W4224297054 hasLocation W42242970542 @default.
- W4224297054 hasOpenAccess W4224297054 @default.
- W4224297054 hasPrimaryLocation W42242970541 @default.
- W4224297054 hasRelatedWork W2996856019 @default.
- W4224297054 hasRelatedWork W3018421652 @default.
- W4224297054 hasRelatedWork W3021430260 @default.