Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224298005> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4224298005 endingPage "102895" @default.
- W4224298005 startingPage "102895" @default.
- W4224298005 abstract "Increasing traffic demand in the backbone optical network urges the initiation of new solutions that allow an increment in the transmission/network capacity without a considerable rise in service costs. To attain this objective, simpler and quicker network reconfiguration processes is required. A significant issue intrinsically correlated with network reconfiguration is the quality of transmission (QoT) (BER, SNR, Q-factor, chromatic dispersion and polarization mode dispersion) estimation. Predicting the QoT of already established light-paths enable network operators to respond proactively to performance deterioration, which helps in enhancing or sustaining quality of service (QoS). Recently, several deep learning-based approaches have been presented to estimate the QoT of an optical network. This paper proposes an advanced deep learning model comprising a long short-term memory (LSTM) network along with three fully connected layers that leverage the transmission quality metrics collected from the network’s control plane to predict QoT of light-path. The three additional fully connected layers help the model learn the more complex patterns in the data that a basic LSTM cannot learn on its own and improve the model’s performance by three orders of magnitude. Moreover, the proposed model doesn’t require a large data-set to provide high accuracy results, which decreases the control plane’s load. Our model was tested on a data-set that contains data extracted from Microsoft’s optical backbone network in North America. We compare the performance of the proposed model with reference approaches viz; SVM, MLP, NN, and LSTM to show if such models could be considered for predicting the estimated received Q-factor and chromatic dispersion of established light-paths. Results exhibit that the proposed model achieves the best performance across multiple channels of this data-set and even in a case when the size of the training data-set is small. The proposed model provides high prediction accuracy, which is perfect for the next-generation agile optical network." @default.
- W4224298005 created "2022-04-26" @default.
- W4224298005 creator A5003861708 @default.
- W4224298005 creator A5009149363 @default.
- W4224298005 creator A5052581072 @default.
- W4224298005 date "2022-05-01" @default.
- W4224298005 modified "2023-10-14" @default.
- W4224298005 title "Accurate QoT estimation for the optimized design of optical transport network based on advanced deep learning model" @default.
- W4224298005 cites W1991329089 @default.
- W4224298005 cites W2035643120 @default.
- W4224298005 cites W2060184834 @default.
- W4224298005 cites W2133768407 @default.
- W4224298005 cites W2146265788 @default.
- W4224298005 cites W2165068499 @default.
- W4224298005 cites W2166580510 @default.
- W4224298005 cites W2323657038 @default.
- W4224298005 cites W2337568808 @default.
- W4224298005 cites W2566947163 @default.
- W4224298005 cites W2580902346 @default.
- W4224298005 cites W2735521527 @default.
- W4224298005 cites W2745723384 @default.
- W4224298005 cites W2787811863 @default.
- W4224298005 cites W2789611500 @default.
- W4224298005 cites W2789930327 @default.
- W4224298005 cites W2790165588 @default.
- W4224298005 cites W2883295335 @default.
- W4224298005 cites W2886362979 @default.
- W4224298005 cites W2890645375 @default.
- W4224298005 cites W2912267671 @default.
- W4224298005 cites W2915984567 @default.
- W4224298005 cites W2917350099 @default.
- W4224298005 cites W2964101383 @default.
- W4224298005 cites W2971189838 @default.
- W4224298005 cites W2998352845 @default.
- W4224298005 cites W3103211661 @default.
- W4224298005 cites W3120020704 @default.
- W4224298005 cites W4240193714 @default.
- W4224298005 doi "https://doi.org/10.1016/j.yofte.2022.102895" @default.
- W4224298005 hasPublicationYear "2022" @default.
- W4224298005 type Work @default.
- W4224298005 citedByCount "2" @default.
- W4224298005 countsByYear W42242980052022 @default.
- W4224298005 countsByYear W42242980052023 @default.
- W4224298005 crossrefType "journal-article" @default.
- W4224298005 hasAuthorship W4224298005A5003861708 @default.
- W4224298005 hasAuthorship W4224298005A5009149363 @default.
- W4224298005 hasAuthorship W4224298005A5052581072 @default.
- W4224298005 hasConcept C119701452 @default.
- W4224298005 hasConcept C120314980 @default.
- W4224298005 hasConcept C149635348 @default.
- W4224298005 hasConcept C153083717 @default.
- W4224298005 hasConcept C154945302 @default.
- W4224298005 hasConcept C178557918 @default.
- W4224298005 hasConcept C194232370 @default.
- W4224298005 hasConcept C31258907 @default.
- W4224298005 hasConcept C41008148 @default.
- W4224298005 hasConcept C5119721 @default.
- W4224298005 hasConcept C761482 @default.
- W4224298005 hasConcept C76155785 @default.
- W4224298005 hasConcept C79403827 @default.
- W4224298005 hasConceptScore W4224298005C119701452 @default.
- W4224298005 hasConceptScore W4224298005C120314980 @default.
- W4224298005 hasConceptScore W4224298005C149635348 @default.
- W4224298005 hasConceptScore W4224298005C153083717 @default.
- W4224298005 hasConceptScore W4224298005C154945302 @default.
- W4224298005 hasConceptScore W4224298005C178557918 @default.
- W4224298005 hasConceptScore W4224298005C194232370 @default.
- W4224298005 hasConceptScore W4224298005C31258907 @default.
- W4224298005 hasConceptScore W4224298005C41008148 @default.
- W4224298005 hasConceptScore W4224298005C5119721 @default.
- W4224298005 hasConceptScore W4224298005C761482 @default.
- W4224298005 hasConceptScore W4224298005C76155785 @default.
- W4224298005 hasConceptScore W4224298005C79403827 @default.
- W4224298005 hasLocation W42242980051 @default.
- W4224298005 hasOpenAccess W4224298005 @default.
- W4224298005 hasPrimaryLocation W42242980051 @default.
- W4224298005 hasRelatedWork W1485676917 @default.
- W4224298005 hasRelatedWork W1751052531 @default.
- W4224298005 hasRelatedWork W1772332298 @default.
- W4224298005 hasRelatedWork W1997415650 @default.
- W4224298005 hasRelatedWork W2074837130 @default.
- W4224298005 hasRelatedWork W2103304092 @default.
- W4224298005 hasRelatedWork W2130966263 @default.
- W4224298005 hasRelatedWork W2131659827 @default.
- W4224298005 hasRelatedWork W2376125216 @default.
- W4224298005 hasRelatedWork W2380297439 @default.
- W4224298005 hasVolume "70" @default.
- W4224298005 isParatext "false" @default.
- W4224298005 isRetracted "false" @default.
- W4224298005 workType "article" @default.