Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224300732> ?p ?o ?g. }
- W4224300732 endingPage "1767" @default.
- W4224300732 startingPage "1767" @default.
- W4224300732 abstract "Building extraction using very high resolution (VHR) optical remote sensing imagery is an essential interpretation task that impacts human life. However, buildings in different environments exhibit various scales, complicated spatial distributions, and different imaging conditions. Additionally, with the spatial resolution of images increasing, there are diverse interior details and redundant context information present in building and background areas. Thus, the above-mentioned situations would create large intra-class variances and poor inter-class discrimination, leading to uncertain feature descriptions for building extraction, which would result in over- or under-extraction phenomena. In this article, a novel hierarchical disentangling network with an encoder–decoder architecture called HDNet is proposed to consider both the stable and uncertain feature description in a convolution neural network (CNN). Next, a hierarchical disentangling strategy is set up to individually generate strong and weak semantic zones using a newly designed feature disentangling module (FDM). Here, the strong and weak semantic zones set up the stable and uncertain description individually to determine a more stable semantic main body and uncertain semantic boundary of buildings. Next, a dual-stream semantic feature description is built to gradually integrate strong and weak semantic zones by the designed component feature fusion module (CFFM), which is able to generate a powerful semantic description for more complete and refined building extraction. Finally, extensive experiments are carried out on three published datasets (i.e., WHU satellite, WHU aerial, and INRIA), and the comparison results show that the proposed HDNet outperforms other state-of-the-art (SOTA) methods." @default.
- W4224300732 created "2022-04-26" @default.
- W4224300732 creator A5006719409 @default.
- W4224300732 creator A5011487190 @default.
- W4224300732 creator A5021378992 @default.
- W4224300732 creator A5023179941 @default.
- W4224300732 creator A5036074690 @default.
- W4224300732 creator A5049266422 @default.
- W4224300732 creator A5075134790 @default.
- W4224300732 creator A5085917066 @default.
- W4224300732 date "2022-04-06" @default.
- W4224300732 modified "2023-10-06" @default.
- W4224300732 title "Hierarchical Disentangling Network for Building Extraction from Very High Resolution Optical Remote Sensing Imagery" @default.
- W4224300732 cites W1975520234 @default.
- W4224300732 cites W2000803298 @default.
- W4224300732 cites W2055702796 @default.
- W4224300732 cites W2141573384 @default.
- W4224300732 cites W2149980531 @default.
- W4224300732 cites W2238499080 @default.
- W4224300732 cites W2395611524 @default.
- W4224300732 cites W2412782625 @default.
- W4224300732 cites W2592365852 @default.
- W4224300732 cites W2790741584 @default.
- W4224300732 cites W2794606897 @default.
- W4224300732 cites W2887469576 @default.
- W4224300732 cites W2901886595 @default.
- W4224300732 cites W2908320224 @default.
- W4224300732 cites W2914928371 @default.
- W4224300732 cites W2927945203 @default.
- W4224300732 cites W2937933649 @default.
- W4224300732 cites W2939647427 @default.
- W4224300732 cites W2963881378 @default.
- W4224300732 cites W2972623730 @default.
- W4224300732 cites W2980346985 @default.
- W4224300732 cites W2982206001 @default.
- W4224300732 cites W2991441757 @default.
- W4224300732 cites W2996327453 @default.
- W4224300732 cites W3013719693 @default.
- W4224300732 cites W3019847943 @default.
- W4224300732 cites W3021057985 @default.
- W4224300732 cites W3024287916 @default.
- W4224300732 cites W3053564872 @default.
- W4224300732 cites W3054909038 @default.
- W4224300732 cites W3088431851 @default.
- W4224300732 cites W3098283929 @default.
- W4224300732 cites W3110797472 @default.
- W4224300732 cites W3111269891 @default.
- W4224300732 cites W3126435384 @default.
- W4224300732 cites W3128055887 @default.
- W4224300732 cites W3129784683 @default.
- W4224300732 cites W3136393638 @default.
- W4224300732 cites W3148283428 @default.
- W4224300732 cites W3156066202 @default.
- W4224300732 cites W3157821094 @default.
- W4224300732 cites W3164054750 @default.
- W4224300732 cites W3168588044 @default.
- W4224300732 cites W3185857823 @default.
- W4224300732 cites W3201260569 @default.
- W4224300732 cites W3211053809 @default.
- W4224300732 cites W4210602961 @default.
- W4224300732 cites W3201387179 @default.
- W4224300732 doi "https://doi.org/10.3390/rs14071767" @default.
- W4224300732 hasPublicationYear "2022" @default.
- W4224300732 type Work @default.
- W4224300732 citedByCount "3" @default.
- W4224300732 countsByYear W42243007322022 @default.
- W4224300732 countsByYear W42243007322023 @default.
- W4224300732 crossrefType "journal-article" @default.
- W4224300732 hasAuthorship W4224300732A5006719409 @default.
- W4224300732 hasAuthorship W4224300732A5011487190 @default.
- W4224300732 hasAuthorship W4224300732A5021378992 @default.
- W4224300732 hasAuthorship W4224300732A5023179941 @default.
- W4224300732 hasAuthorship W4224300732A5036074690 @default.
- W4224300732 hasAuthorship W4224300732A5049266422 @default.
- W4224300732 hasAuthorship W4224300732A5075134790 @default.
- W4224300732 hasAuthorship W4224300732A5085917066 @default.
- W4224300732 hasBestOaLocation W42243007321 @default.
- W4224300732 hasConcept C111919701 @default.
- W4224300732 hasConcept C118505674 @default.
- W4224300732 hasConcept C124101348 @default.
- W4224300732 hasConcept C127313418 @default.
- W4224300732 hasConcept C138885662 @default.
- W4224300732 hasConcept C151730666 @default.
- W4224300732 hasConcept C153180895 @default.
- W4224300732 hasConcept C154945302 @default.
- W4224300732 hasConcept C177264268 @default.
- W4224300732 hasConcept C199360897 @default.
- W4224300732 hasConcept C2776401178 @default.
- W4224300732 hasConcept C2779343474 @default.
- W4224300732 hasConcept C2781122975 @default.
- W4224300732 hasConcept C41008148 @default.
- W4224300732 hasConcept C41895202 @default.
- W4224300732 hasConcept C52622490 @default.
- W4224300732 hasConcept C62649853 @default.
- W4224300732 hasConcept C81363708 @default.
- W4224300732 hasConceptScore W4224300732C111919701 @default.
- W4224300732 hasConceptScore W4224300732C118505674 @default.
- W4224300732 hasConceptScore W4224300732C124101348 @default.