Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224303928> ?p ?o ?g. }
- W4224303928 endingPage "1269" @default.
- W4224303928 startingPage "1269" @default.
- W4224303928 abstract "This paper utilizes multi-objective optimization for efficient fabrication of a novel Carbon Nanotube (CNT) based nanocomposite proximity sensor. A previously developed model is utilized to generate a large data set required for optimization which included dimensions of the film sensor, applied excitation frequency, medium permittivity, and resistivity of sensor dielectric, to maximize sensor sensitivity and minimize the cost of the material used. To decrease the runtime of the original model, an artificial neural network (ANN) is implemented by generating a one-thousand samples data set to create and train a black-box model. This model is used as the fitness function of a genetic algorithm (GA) model for dual-objective optimization. We also represented the 2D Pareto Frontier of optimum solutions and scatters of distribution. A parametric study is also performed to discern the effects of the various device parameters. The results provide a wide range of geometrical data leading to the maximum sensitivity at the minimum cost of conductive nanoparticles. The innovative contribution of this research is the combination of GA and ANN, which results in a fast and accurate optimization scheme." @default.
- W4224303928 created "2022-04-26" @default.
- W4224303928 creator A5003673661 @default.
- W4224303928 creator A5008905754 @default.
- W4224303928 creator A5031754329 @default.
- W4224303928 date "2022-04-08" @default.
- W4224303928 modified "2023-10-02" @default.
- W4224303928 title "An Integrated Nanocomposite Proximity Sensor: Machine Learning-Based Optimization, Simulation, and Experiment" @default.
- W4224303928 cites W1966491970 @default.
- W4224303928 cites W1979369614 @default.
- W4224303928 cites W1999585120 @default.
- W4224303928 cites W2004835256 @default.
- W4224303928 cites W2008434880 @default.
- W4224303928 cites W2023566747 @default.
- W4224303928 cites W2036612697 @default.
- W4224303928 cites W2043118672 @default.
- W4224303928 cites W2063954622 @default.
- W4224303928 cites W2079807211 @default.
- W4224303928 cites W2121093563 @default.
- W4224303928 cites W2133567427 @default.
- W4224303928 cites W2144034163 @default.
- W4224303928 cites W2160331134 @default.
- W4224303928 cites W2163369506 @default.
- W4224303928 cites W2169207653 @default.
- W4224303928 cites W2246235660 @default.
- W4224303928 cites W2266175888 @default.
- W4224303928 cites W2345100752 @default.
- W4224303928 cites W2567094000 @default.
- W4224303928 cites W2595852727 @default.
- W4224303928 cites W2606219013 @default.
- W4224303928 cites W2606579376 @default.
- W4224303928 cites W2737325303 @default.
- W4224303928 cites W2809000401 @default.
- W4224303928 cites W2883165917 @default.
- W4224303928 cites W2900505353 @default.
- W4224303928 cites W2922660011 @default.
- W4224303928 cites W2935701132 @default.
- W4224303928 cites W2956286142 @default.
- W4224303928 cites W2967744941 @default.
- W4224303928 cites W2967947647 @default.
- W4224303928 cites W2973992918 @default.
- W4224303928 cites W3028457518 @default.
- W4224303928 cites W3066380897 @default.
- W4224303928 cites W3121096966 @default.
- W4224303928 cites W3135121753 @default.
- W4224303928 cites W4221039010 @default.
- W4224303928 doi "https://doi.org/10.3390/nano12081269" @default.
- W4224303928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35457974" @default.
- W4224303928 hasPublicationYear "2022" @default.
- W4224303928 type Work @default.
- W4224303928 citedByCount "7" @default.
- W4224303928 countsByYear W42243039282022 @default.
- W4224303928 countsByYear W42243039282023 @default.
- W4224303928 crossrefType "journal-article" @default.
- W4224303928 hasAuthorship W4224303928A5003673661 @default.
- W4224303928 hasAuthorship W4224303928A5008905754 @default.
- W4224303928 hasAuthorship W4224303928A5031754329 @default.
- W4224303928 hasBestOaLocation W42243039281 @default.
- W4224303928 hasConcept C105795698 @default.
- W4224303928 hasConcept C11413529 @default.
- W4224303928 hasConcept C117251300 @default.
- W4224303928 hasConcept C119857082 @default.
- W4224303928 hasConcept C126255220 @default.
- W4224303928 hasConcept C127413603 @default.
- W4224303928 hasConcept C137635306 @default.
- W4224303928 hasConcept C137836250 @default.
- W4224303928 hasConcept C154945302 @default.
- W4224303928 hasConcept C176066374 @default.
- W4224303928 hasConcept C192562407 @default.
- W4224303928 hasConcept C21200559 @default.
- W4224303928 hasConcept C24326235 @default.
- W4224303928 hasConcept C24574437 @default.
- W4224303928 hasConcept C33923547 @default.
- W4224303928 hasConcept C41008148 @default.
- W4224303928 hasConcept C50644808 @default.
- W4224303928 hasConcept C68781425 @default.
- W4224303928 hasConcept C8880873 @default.
- W4224303928 hasConceptScore W4224303928C105795698 @default.
- W4224303928 hasConceptScore W4224303928C11413529 @default.
- W4224303928 hasConceptScore W4224303928C117251300 @default.
- W4224303928 hasConceptScore W4224303928C119857082 @default.
- W4224303928 hasConceptScore W4224303928C126255220 @default.
- W4224303928 hasConceptScore W4224303928C127413603 @default.
- W4224303928 hasConceptScore W4224303928C137635306 @default.
- W4224303928 hasConceptScore W4224303928C137836250 @default.
- W4224303928 hasConceptScore W4224303928C154945302 @default.
- W4224303928 hasConceptScore W4224303928C176066374 @default.
- W4224303928 hasConceptScore W4224303928C192562407 @default.
- W4224303928 hasConceptScore W4224303928C21200559 @default.
- W4224303928 hasConceptScore W4224303928C24326235 @default.
- W4224303928 hasConceptScore W4224303928C24574437 @default.
- W4224303928 hasConceptScore W4224303928C33923547 @default.
- W4224303928 hasConceptScore W4224303928C41008148 @default.
- W4224303928 hasConceptScore W4224303928C50644808 @default.
- W4224303928 hasConceptScore W4224303928C68781425 @default.
- W4224303928 hasConceptScore W4224303928C8880873 @default.
- W4224303928 hasIssue "8" @default.
- W4224303928 hasLocation W42243039281 @default.