Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224304741> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4224304741 endingPage "108701" @default.
- W4224304741 startingPage "108701" @default.
- W4224304741 abstract "• A novel Minimum Error Minimax Probability Machine (MEMPM) method is presented. • The Cobb-Douglas production function is extended to machine learning. • The proposal is a robust formulation for linear and kernel-based classification. • The method is solved via a self-developed two-step alternating algorithm. • We prove that the optimization scheme converges to the optimal solution of the problem. • Best performance is achieved in experiments carried out on 17 benchmark datasets. In this paper, we propose a novel machine learning approach based on robust optimization. Our proposal defines the task of maximizing the two class accuracies of a binary classification problem as a Cobb-Douglas function. This function is well known in production economics and is used to model the relationship between two or more inputs as well as the quantity produced by those inputs. A robust optimization problem is defined to construct the decision function. The goal of the model is to classify each training pattern correctly, up to a given class accuracy, even for the worst possible data distribution. We demonstrate the theoretical advantages of the Cobb-Douglas function in terms of the properties of the resulting second-order cone programming problem. Important extensions are proposed and discussed, including the use of kernel functions and regularization. Experiments performed on several classification datasets confirm these advantages, leading to the best average performance in comparison to various alternative classifiers." @default.
- W4224304741 created "2022-04-26" @default.
- W4224304741 creator A5007513550 @default.
- W4224304741 creator A5031910124 @default.
- W4224304741 creator A5061198264 @default.
- W4224304741 date "2022-08-01" @default.
- W4224304741 modified "2023-10-17" @default.
- W4224304741 title "The Cobb-Douglas Learning Machine" @default.
- W4224304741 cites W1967073510 @default.
- W4224304741 cites W1996932677 @default.
- W4224304741 cites W2009923109 @default.
- W4224304741 cites W2090089568 @default.
- W4224304741 cites W2100573451 @default.
- W4224304741 cites W2133537675 @default.
- W4224304741 cites W2152813753 @default.
- W4224304741 cites W2153635508 @default.
- W4224304741 cites W2167573701 @default.
- W4224304741 cites W2170860445 @default.
- W4224304741 cites W2287102362 @default.
- W4224304741 cites W2336484677 @default.
- W4224304741 cites W2512967729 @default.
- W4224304741 cites W2754866075 @default.
- W4224304741 cites W2772283936 @default.
- W4224304741 cites W2794511463 @default.
- W4224304741 cites W2889782865 @default.
- W4224304741 cites W2940923056 @default.
- W4224304741 cites W2950523637 @default.
- W4224304741 cites W2963345615 @default.
- W4224304741 cites W2992634800 @default.
- W4224304741 cites W3024758683 @default.
- W4224304741 cites W3135286407 @default.
- W4224304741 cites W3156680434 @default.
- W4224304741 cites W3197695291 @default.
- W4224304741 doi "https://doi.org/10.1016/j.patcog.2022.108701" @default.
- W4224304741 hasPublicationYear "2022" @default.
- W4224304741 type Work @default.
- W4224304741 citedByCount "1" @default.
- W4224304741 countsByYear W42243047412023 @default.
- W4224304741 crossrefType "journal-article" @default.
- W4224304741 hasAuthorship W4224304741A5007513550 @default.
- W4224304741 hasAuthorship W4224304741A5031910124 @default.
- W4224304741 hasAuthorship W4224304741A5061198264 @default.
- W4224304741 hasConcept C119857082 @default.
- W4224304741 hasConcept C154945302 @default.
- W4224304741 hasConcept C2775946787 @default.
- W4224304741 hasConcept C41008148 @default.
- W4224304741 hasConcept C54355233 @default.
- W4224304741 hasConcept C86803240 @default.
- W4224304741 hasConceptScore W4224304741C119857082 @default.
- W4224304741 hasConceptScore W4224304741C154945302 @default.
- W4224304741 hasConceptScore W4224304741C2775946787 @default.
- W4224304741 hasConceptScore W4224304741C41008148 @default.
- W4224304741 hasConceptScore W4224304741C54355233 @default.
- W4224304741 hasConceptScore W4224304741C86803240 @default.
- W4224304741 hasLocation W42243047411 @default.
- W4224304741 hasOpenAccess W4224304741 @default.
- W4224304741 hasPrimaryLocation W42243047411 @default.
- W4224304741 hasRelatedWork W2961085424 @default.
- W4224304741 hasRelatedWork W3046775127 @default.
- W4224304741 hasRelatedWork W3107602296 @default.
- W4224304741 hasRelatedWork W3170094116 @default.
- W4224304741 hasRelatedWork W3209574120 @default.
- W4224304741 hasRelatedWork W4205958290 @default.
- W4224304741 hasRelatedWork W4286629047 @default.
- W4224304741 hasRelatedWork W4306321456 @default.
- W4224304741 hasRelatedWork W4306674287 @default.
- W4224304741 hasRelatedWork W4224009465 @default.
- W4224304741 hasVolume "128" @default.
- W4224304741 isParatext "false" @default.
- W4224304741 isRetracted "false" @default.
- W4224304741 workType "article" @default.