Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224304847> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4224304847 abstract "The paper discusses a new concept combining the potentialities of Big Data processing as well as machine learning developed for security monitoring of mobile Internet of Things. The structure of the security monitoring system is considered as a most effective and useful element to create a new viewpoint of mobile IoT. This article focuses implementation of machine learning in online education. Thus mobile IoT has found successful application in few areas such as security monitoring in public places, transport management, medicine, smart houses, industrial production, electrical consumption, and robotics. All the mathematical foundations along with issues related to this have been considered in this study. In order to solve the classification task, several machine learning mechanisms have been mentioned in this paper. Large organizations are incorporating data-driven actions, and decision making in organizational function. The role of data aggregation is effective here achieving the business objectives. Vast amount of raw data can be processed linearly through data aggregation. This article describes the interaction of data aggregation through wireless networking assuming its effectiveness in online education. Data aggregation in machine learning is highlighted based on evidence based data. The purpose of this research article is to investigate the machine learning adaptability in big data analytics environments with the approach of IoT. In order to collect accurate data, the researcher has taken the help of a secondary data collection method. It has helped the researcher to find out the valid information about mobile IoT. In addition, qualitative methods have been adapted to malaise the collected data within a systematic way. Moreover, this study will help the readers to understand the value of mobile IoT helping in machine learning adaptability in big data analytics." @default.
- W4224304847 created "2022-04-26" @default.
- W4224304847 creator A5004481444 @default.
- W4224304847 creator A5009614813 @default.
- W4224304847 creator A5021778863 @default.
- W4224304847 creator A5047215358 @default.
- W4224304847 creator A5061113111 @default.
- W4224304847 creator A5075827290 @default.
- W4224304847 date "2022-02-23" @default.
- W4224304847 modified "2023-10-16" @default.
- W4224304847 title "An Exploratory analysis of Machine Learning adaptability in Big Data Analytics Environments: A Data Aggregation in the age of Big Data and the Internet of Things" @default.
- W4224304847 cites W2765329640 @default.
- W4224304847 cites W2799286067 @default.
- W4224304847 cites W2977992592 @default.
- W4224304847 cites W2982657588 @default.
- W4224304847 cites W2996908335 @default.
- W4224304847 cites W2998574317 @default.
- W4224304847 cites W3005283475 @default.
- W4224304847 cites W3011590361 @default.
- W4224304847 cites W3025850044 @default.
- W4224304847 cites W3047161823 @default.
- W4224304847 cites W3048002286 @default.
- W4224304847 cites W3153045320 @default.
- W4224304847 doi "https://doi.org/10.1109/iciptm54933.2022.9753921" @default.
- W4224304847 hasPublicationYear "2022" @default.
- W4224304847 type Work @default.
- W4224304847 citedByCount "2" @default.
- W4224304847 countsByYear W42243048472022 @default.
- W4224304847 countsByYear W42243048472023 @default.
- W4224304847 crossrefType "proceedings-article" @default.
- W4224304847 hasAuthorship W4224304847A5004481444 @default.
- W4224304847 hasAuthorship W4224304847A5009614813 @default.
- W4224304847 hasAuthorship W4224304847A5021778863 @default.
- W4224304847 hasAuthorship W4224304847A5047215358 @default.
- W4224304847 hasAuthorship W4224304847A5061113111 @default.
- W4224304847 hasAuthorship W4224304847A5075827290 @default.
- W4224304847 hasConcept C105795698 @default.
- W4224304847 hasConcept C119857082 @default.
- W4224304847 hasConcept C124101348 @default.
- W4224304847 hasConcept C132964779 @default.
- W4224304847 hasConcept C133462117 @default.
- W4224304847 hasConcept C154945302 @default.
- W4224304847 hasConcept C175801342 @default.
- W4224304847 hasConcept C177606310 @default.
- W4224304847 hasConcept C18903297 @default.
- W4224304847 hasConcept C199360897 @default.
- W4224304847 hasConcept C2522767166 @default.
- W4224304847 hasConcept C33923547 @default.
- W4224304847 hasConcept C41008148 @default.
- W4224304847 hasConcept C75684735 @default.
- W4224304847 hasConcept C79158427 @default.
- W4224304847 hasConcept C86803240 @default.
- W4224304847 hasConceptScore W4224304847C105795698 @default.
- W4224304847 hasConceptScore W4224304847C119857082 @default.
- W4224304847 hasConceptScore W4224304847C124101348 @default.
- W4224304847 hasConceptScore W4224304847C132964779 @default.
- W4224304847 hasConceptScore W4224304847C133462117 @default.
- W4224304847 hasConceptScore W4224304847C154945302 @default.
- W4224304847 hasConceptScore W4224304847C175801342 @default.
- W4224304847 hasConceptScore W4224304847C177606310 @default.
- W4224304847 hasConceptScore W4224304847C18903297 @default.
- W4224304847 hasConceptScore W4224304847C199360897 @default.
- W4224304847 hasConceptScore W4224304847C2522767166 @default.
- W4224304847 hasConceptScore W4224304847C33923547 @default.
- W4224304847 hasConceptScore W4224304847C41008148 @default.
- W4224304847 hasConceptScore W4224304847C75684735 @default.
- W4224304847 hasConceptScore W4224304847C79158427 @default.
- W4224304847 hasConceptScore W4224304847C86803240 @default.
- W4224304847 hasLocation W42243048471 @default.
- W4224304847 hasOpenAccess W4224304847 @default.
- W4224304847 hasPrimaryLocation W42243048471 @default.
- W4224304847 hasRelatedWork W1920722142 @default.
- W4224304847 hasRelatedWork W2058081643 @default.
- W4224304847 hasRelatedWork W2508885301 @default.
- W4224304847 hasRelatedWork W2751278362 @default.
- W4224304847 hasRelatedWork W2784643306 @default.
- W4224304847 hasRelatedWork W3127240043 @default.
- W4224304847 hasRelatedWork W4200482797 @default.
- W4224304847 hasRelatedWork W4255130600 @default.
- W4224304847 hasRelatedWork W4288754811 @default.
- W4224304847 hasRelatedWork W3192941534 @default.
- W4224304847 isParatext "false" @default.
- W4224304847 isRetracted "false" @default.
- W4224304847 workType "article" @default.