Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224307561> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4224307561 endingPage "824" @default.
- W4224307561 startingPage "806" @default.
- W4224307561 abstract "Purpose The COVID-19 has become a global pandemic, which has caused large number of deaths and huge economic losses. These losses are not only caused by the virus but also by the related rumors. Nowadays, online social media are quite popular, where billions of people express their opinions and propagate information. Rumors about COVID-19 posted on online social media usually spread rapidly; it is hard to analyze and detect rumors only by artificial processing. The purpose of this paper is to propose a novel model called the Topic-Comment-based Rumor Detection model (TopCom) to detect rumors as soon as possible. Design/methodology/approach The authors conducted COVID-19 rumor detection from Sina Weibo, one of the most widely used Chinese online social media. The authors constructed a dataset about COVID-19 from January 1 to June 30, 2020 with a web crawler, including both rumor and non-rumors. The rumor detection task is regarded as a binary classification problem. The proposed TopCom model exploits the topical memory networks to fuse latent topic information with original microblogs, which solves the sparsity problems brought by short-text microblogs. In addition, TopCom fuses comments with corresponding microblogs to further improve the performance. Findings Experimental results on a publicly available dataset and the proposed COVID dataset have shown superiority and efficiency compared with baselines. The authors further randomly selected microblogs posted from July 1–31, 2020 for the case study, which also shows the effectiveness and application prospects for detecting rumors about COVID-19 automatically. Originality/value The originality of TopCom lies in the fusion of latent topic information of original microblogs and corresponding comments with DNNs-based models for the COVID-19 rumor detection task, whose value is to help detect rumors automatically in a short time." @default.
- W4224307561 created "2022-04-26" @default.
- W4224307561 creator A5014537056 @default.
- W4224307561 creator A5044733681 @default.
- W4224307561 creator A5086567612 @default.
- W4224307561 creator A5088632918 @default.
- W4224307561 creator A5089860286 @default.
- W4224307561 date "2022-04-22" @default.
- W4224307561 modified "2023-10-01" @default.
- W4224307561 title "A deep neural networks-based fusion model for COVID-19 rumor detection from online social media" @default.
- W4224307561 cites W1961987884 @default.
- W4224307561 cites W1971494700 @default.
- W4224307561 cites W1990474689 @default.
- W4224307561 cites W2347127863 @default.
- W4224307561 cites W2804660693 @default.
- W4224307561 cites W2981025273 @default.
- W4224307561 cites W3101380508 @default.
- W4224307561 cites W3164251260 @default.
- W4224307561 cites W3193748475 @default.
- W4224307561 cites W3195280307 @default.
- W4224307561 doi "https://doi.org/10.1108/dta-06-2021-0160" @default.
- W4224307561 hasPublicationYear "2022" @default.
- W4224307561 type Work @default.
- W4224307561 citedByCount "1" @default.
- W4224307561 countsByYear W42243075612023 @default.
- W4224307561 crossrefType "journal-article" @default.
- W4224307561 hasAuthorship W4224307561A5014537056 @default.
- W4224307561 hasAuthorship W4224307561A5044733681 @default.
- W4224307561 hasAuthorship W4224307561A5086567612 @default.
- W4224307561 hasAuthorship W4224307561A5088632918 @default.
- W4224307561 hasAuthorship W4224307561A5089860286 @default.
- W4224307561 hasConcept C11012388 @default.
- W4224307561 hasConcept C119857082 @default.
- W4224307561 hasConcept C136764020 @default.
- W4224307561 hasConcept C13743948 @default.
- W4224307561 hasConcept C142724271 @default.
- W4224307561 hasConcept C143275388 @default.
- W4224307561 hasConcept C154945302 @default.
- W4224307561 hasConcept C171686336 @default.
- W4224307561 hasConcept C17744445 @default.
- W4224307561 hasConcept C199539241 @default.
- W4224307561 hasConcept C23123220 @default.
- W4224307561 hasConcept C2522767166 @default.
- W4224307561 hasConcept C2776950860 @default.
- W4224307561 hasConcept C2779134260 @default.
- W4224307561 hasConcept C2780469804 @default.
- W4224307561 hasConcept C3008058167 @default.
- W4224307561 hasConcept C39549134 @default.
- W4224307561 hasConcept C41008148 @default.
- W4224307561 hasConcept C518677369 @default.
- W4224307561 hasConcept C524204448 @default.
- W4224307561 hasConcept C71924100 @default.
- W4224307561 hasConceptScore W4224307561C11012388 @default.
- W4224307561 hasConceptScore W4224307561C119857082 @default.
- W4224307561 hasConceptScore W4224307561C136764020 @default.
- W4224307561 hasConceptScore W4224307561C13743948 @default.
- W4224307561 hasConceptScore W4224307561C142724271 @default.
- W4224307561 hasConceptScore W4224307561C143275388 @default.
- W4224307561 hasConceptScore W4224307561C154945302 @default.
- W4224307561 hasConceptScore W4224307561C171686336 @default.
- W4224307561 hasConceptScore W4224307561C17744445 @default.
- W4224307561 hasConceptScore W4224307561C199539241 @default.
- W4224307561 hasConceptScore W4224307561C23123220 @default.
- W4224307561 hasConceptScore W4224307561C2522767166 @default.
- W4224307561 hasConceptScore W4224307561C2776950860 @default.
- W4224307561 hasConceptScore W4224307561C2779134260 @default.
- W4224307561 hasConceptScore W4224307561C2780469804 @default.
- W4224307561 hasConceptScore W4224307561C3008058167 @default.
- W4224307561 hasConceptScore W4224307561C39549134 @default.
- W4224307561 hasConceptScore W4224307561C41008148 @default.
- W4224307561 hasConceptScore W4224307561C518677369 @default.
- W4224307561 hasConceptScore W4224307561C524204448 @default.
- W4224307561 hasConceptScore W4224307561C71924100 @default.
- W4224307561 hasIssue "5" @default.
- W4224307561 hasLocation W42243075611 @default.
- W4224307561 hasOpenAccess W4224307561 @default.
- W4224307561 hasPrimaryLocation W42243075611 @default.
- W4224307561 hasRelatedWork W2018189020 @default.
- W4224307561 hasRelatedWork W2252223420 @default.
- W4224307561 hasRelatedWork W2296388605 @default.
- W4224307561 hasRelatedWork W2784153230 @default.
- W4224307561 hasRelatedWork W3039193965 @default.
- W4224307561 hasRelatedWork W3042694964 @default.
- W4224307561 hasRelatedWork W3094709634 @default.
- W4224307561 hasRelatedWork W3120873440 @default.
- W4224307561 hasRelatedWork W3127548417 @default.
- W4224307561 hasRelatedWork W4224307561 @default.
- W4224307561 hasVolume "56" @default.
- W4224307561 isParatext "false" @default.
- W4224307561 isRetracted "false" @default.
- W4224307561 workType "article" @default.