Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224311911> ?p ?o ?g. }
- W4224311911 endingPage "461" @default.
- W4224311911 startingPage "440" @default.
- W4224311911 abstract "ABSTRACT Expensive forward model evaluations and the curse of dimensionality usually hinder applications of Markov chain Monte Carlo algorithms to geophysical inverse problems. Another challenge of these methods is related to the definition of an appropriate proposal distribution that simultaneously should be inexpensive to manipulate and a good approximation of the posterior density. Here we present a gradient‐based Markov chain Monte Carlo inversion algorithm that is applied to cast the electrical resistivity tomography into a probabilistic framework. The sampling is accelerated by exploiting the Hessian and gradient information of the negative log‐posterior to define a proposal that is a local, Gaussian approximation of the target posterior probability. On the one hand, the computing time to run the many forward evaluations needed for both the data likelihood evaluation and the Hessian and gradient computation is decreased by training a residual neural network to predict the forward mapping between the resistivity model and the apparent resistivity value. On the other hand, the curse of dimensionality issue and the computational effort related to the Hessian and gradient manipulation are decreased by compressing data and model spaces through a discrete cosine transform. A non‐parametric distribution is assumed as the prior probability density function. The method is first demonstrated on synthetic data and then applied to field measurements. The outcomes provided by the presented approach are also benchmarked against those obtained when a computationally expensive finite‐element code is employed for forward modelling , with the results of a gradient‐free Markov chain Monte Carlo inversion, and also compared with the predictions of a deterministic inversion. The implemented approach not only guarantees uncertainty assessments and model predictions comparable with those achieved by more standard inversion strategies, but also drastically decreases the computational cost of the probabilistic inversion, making it similar to that of a deterministic inversion." @default.
- W4224311911 created "2022-04-26" @default.
- W4224311911 creator A5002869321 @default.
- W4224311911 creator A5043703686 @default.
- W4224311911 creator A5056618135 @default.
- W4224311911 creator A5004321979 @default.
- W4224311911 date "2022-05-20" @default.
- W4224311911 modified "2023-10-14" @default.
- W4224311911 title "Machine learning‐accelerated gradient‐based Markov chain Monte Carlo inversion applied to electrical resistivity tomography" @default.
- W4224311911 cites W1538120041 @default.
- W4224311911 cites W1995780830 @default.
- W4224311911 cites W2002427861 @default.
- W4224311911 cites W2069157151 @default.
- W4224311911 cites W2071544114 @default.
- W4224311911 cites W2073806962 @default.
- W4224311911 cites W2075385817 @default.
- W4224311911 cites W2082261407 @default.
- W4224311911 cites W2106743671 @default.
- W4224311911 cites W2125916088 @default.
- W4224311911 cites W2144676156 @default.
- W4224311911 cites W2157326321 @default.
- W4224311911 cites W2165342902 @default.
- W4224311911 cites W2173126837 @default.
- W4224311911 cites W2324945037 @default.
- W4224311911 cites W2508594688 @default.
- W4224311911 cites W2584354825 @default.
- W4224311911 cites W2594383661 @default.
- W4224311911 cites W2755404879 @default.
- W4224311911 cites W2762902720 @default.
- W4224311911 cites W2793900496 @default.
- W4224311911 cites W2796570495 @default.
- W4224311911 cites W2900550278 @default.
- W4224311911 cites W2902203974 @default.
- W4224311911 cites W2906141267 @default.
- W4224311911 cites W2907071110 @default.
- W4224311911 cites W2943474355 @default.
- W4224311911 cites W2954201835 @default.
- W4224311911 cites W2981785001 @default.
- W4224311911 cites W2988434973 @default.
- W4224311911 cites W2998865244 @default.
- W4224311911 cites W2999802832 @default.
- W4224311911 cites W3001577681 @default.
- W4224311911 cites W3005635149 @default.
- W4224311911 cites W3014185327 @default.
- W4224311911 cites W3014864856 @default.
- W4224311911 cites W3042615087 @default.
- W4224311911 cites W3047035577 @default.
- W4224311911 cites W3080352642 @default.
- W4224311911 cites W3080353413 @default.
- W4224311911 cites W3095274704 @default.
- W4224311911 cites W3160270913 @default.
- W4224311911 cites W3207102426 @default.
- W4224311911 cites W4205985588 @default.
- W4224311911 cites W4249731213 @default.
- W4224311911 cites W59925474 @default.
- W4224311911 cites W868076610 @default.
- W4224311911 doi "https://doi.org/10.1002/nsg.12211" @default.
- W4224311911 hasPublicationYear "2022" @default.
- W4224311911 type Work @default.
- W4224311911 citedByCount "0" @default.
- W4224311911 crossrefType "journal-article" @default.
- W4224311911 hasAuthorship W4224311911A5002869321 @default.
- W4224311911 hasAuthorship W4224311911A5004321979 @default.
- W4224311911 hasAuthorship W4224311911A5043703686 @default.
- W4224311911 hasAuthorship W4224311911A5056618135 @default.
- W4224311911 hasBestOaLocation W42243119111 @default.
- W4224311911 hasConcept C105795698 @default.
- W4224311911 hasConcept C107673813 @default.
- W4224311911 hasConcept C111030470 @default.
- W4224311911 hasConcept C111350023 @default.
- W4224311911 hasConcept C11413529 @default.
- W4224311911 hasConcept C119857082 @default.
- W4224311911 hasConcept C121332964 @default.
- W4224311911 hasConcept C121864883 @default.
- W4224311911 hasConcept C126255220 @default.
- W4224311911 hasConcept C134306372 @default.
- W4224311911 hasConcept C135252773 @default.
- W4224311911 hasConcept C153258448 @default.
- W4224311911 hasConcept C154945302 @default.
- W4224311911 hasConcept C19499675 @default.
- W4224311911 hasConcept C203616005 @default.
- W4224311911 hasConcept C28826006 @default.
- W4224311911 hasConcept C33923547 @default.
- W4224311911 hasConcept C41008148 @default.
- W4224311911 hasConcept C50644808 @default.
- W4224311911 hasConcept C57830394 @default.
- W4224311911 hasConcept C98763669 @default.
- W4224311911 hasConceptScore W4224311911C105795698 @default.
- W4224311911 hasConceptScore W4224311911C107673813 @default.
- W4224311911 hasConceptScore W4224311911C111030470 @default.
- W4224311911 hasConceptScore W4224311911C111350023 @default.
- W4224311911 hasConceptScore W4224311911C11413529 @default.
- W4224311911 hasConceptScore W4224311911C119857082 @default.
- W4224311911 hasConceptScore W4224311911C121332964 @default.
- W4224311911 hasConceptScore W4224311911C121864883 @default.
- W4224311911 hasConceptScore W4224311911C126255220 @default.
- W4224311911 hasConceptScore W4224311911C134306372 @default.
- W4224311911 hasConceptScore W4224311911C135252773 @default.