Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224312612> ?p ?o ?g. }
- W4224312612 endingPage "889" @default.
- W4224312612 startingPage "889" @default.
- W4224312612 abstract "This study aimed to build machine learning prediction models for predicting pathological subtypes of prevascular mediastinal tumors (PMTs). The candidate predictors were clinical variables and dynamic contrast-enhanced MRI (DCE-MRI)-derived perfusion parameters. The clinical data and preoperative DCE-MRI images of 62 PMT patients, including 17 patients with lymphoma, 31 with thymoma, and 14 with thymic carcinoma, were retrospectively analyzed. Six perfusion parameters were calculated as candidate predictors. Univariate receiver-operating-characteristic curve analysis was performed to evaluate the performance of the prediction models. A predictive model was built based on multi-class classification, which detected lymphoma, thymoma, and thymic carcinoma with sensitivity of 52.9%, 74.2%, and 92.8%, respectively. In addition, two predictive models were built based on binary classification for distinguishing Hodgkin from non-Hodgkin lymphoma and for distinguishing invasive from noninvasive thymoma, with sensitivity of 75% and 71.4%, respectively. In addition to two perfusion parameters (efflux rate constant from tissue extravascular extracellular space into the blood plasma, and extravascular extracellular space volume per unit volume of tissue), age and tumor volume were also essential parameters for predicting PMT subtypes. In conclusion, our machine learning-based predictive model, constructed with clinical data and perfusion parameters, may represent a useful tool for differential diagnosis of PMT subtypes." @default.
- W4224312612 created "2022-04-26" @default.
- W4224312612 creator A5004808367 @default.
- W4224312612 creator A5008575735 @default.
- W4224312612 creator A5009721499 @default.
- W4224312612 creator A5020464501 @default.
- W4224312612 creator A5020831161 @default.
- W4224312612 creator A5039203158 @default.
- W4224312612 creator A5043529705 @default.
- W4224312612 creator A5048373554 @default.
- W4224312612 creator A5051312195 @default.
- W4224312612 creator A5054536742 @default.
- W4224312612 creator A5055203023 @default.
- W4224312612 creator A5060246976 @default.
- W4224312612 date "2022-04-02" @default.
- W4224312612 modified "2023-10-14" @default.
- W4224312612 title "An MRI-Based Clinical-Perfusion Model Predicts Pathological Subtypes of Prevascular Mediastinal Tumors" @default.
- W4224312612 cites W1496506244 @default.
- W4224312612 cites W1894882979 @default.
- W4224312612 cites W1972411610 @default.
- W4224312612 cites W2009381346 @default.
- W4224312612 cites W2050026916 @default.
- W4224312612 cites W2076502595 @default.
- W4224312612 cites W2097596497 @default.
- W4224312612 cites W2100953214 @default.
- W4224312612 cites W2111568654 @default.
- W4224312612 cites W2112317958 @default.
- W4224312612 cites W2145432662 @default.
- W4224312612 cites W2168678052 @default.
- W4224312612 cites W2173855009 @default.
- W4224312612 cites W2220624243 @default.
- W4224312612 cites W2570856291 @default.
- W4224312612 cites W2581816467 @default.
- W4224312612 cites W2596055975 @default.
- W4224312612 cites W2605902543 @default.
- W4224312612 cites W2776372352 @default.
- W4224312612 cites W2810997680 @default.
- W4224312612 cites W2899148392 @default.
- W4224312612 cites W2929273005 @default.
- W4224312612 cites W2961567422 @default.
- W4224312612 cites W2981836045 @default.
- W4224312612 cites W2995704628 @default.
- W4224312612 cites W3009755586 @default.
- W4224312612 cites W3010948083 @default.
- W4224312612 cites W3013672432 @default.
- W4224312612 cites W3016075145 @default.
- W4224312612 cites W3034039063 @default.
- W4224312612 cites W3082529219 @default.
- W4224312612 cites W3110104442 @default.
- W4224312612 cites W3120537376 @default.
- W4224312612 cites W3142076367 @default.
- W4224312612 cites W3155088231 @default.
- W4224312612 cites W3161558287 @default.
- W4224312612 cites W3161718226 @default.
- W4224312612 cites W3165862230 @default.
- W4224312612 cites W3167303441 @default.
- W4224312612 cites W3168011208 @default.
- W4224312612 cites W3171004580 @default.
- W4224312612 cites W3028909843 @default.
- W4224312612 doi "https://doi.org/10.3390/diagnostics12040889" @default.
- W4224312612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35453937" @default.
- W4224312612 hasPublicationYear "2022" @default.
- W4224312612 type Work @default.
- W4224312612 citedByCount "2" @default.
- W4224312612 countsByYear W42243126122022 @default.
- W4224312612 countsByYear W42243126122023 @default.
- W4224312612 crossrefType "journal-article" @default.
- W4224312612 hasAuthorship W4224312612A5004808367 @default.
- W4224312612 hasAuthorship W4224312612A5008575735 @default.
- W4224312612 hasAuthorship W4224312612A5009721499 @default.
- W4224312612 hasAuthorship W4224312612A5020464501 @default.
- W4224312612 hasAuthorship W4224312612A5020831161 @default.
- W4224312612 hasAuthorship W4224312612A5039203158 @default.
- W4224312612 hasAuthorship W4224312612A5043529705 @default.
- W4224312612 hasAuthorship W4224312612A5048373554 @default.
- W4224312612 hasAuthorship W4224312612A5051312195 @default.
- W4224312612 hasAuthorship W4224312612A5054536742 @default.
- W4224312612 hasAuthorship W4224312612A5055203023 @default.
- W4224312612 hasAuthorship W4224312612A5060246976 @default.
- W4224312612 hasBestOaLocation W42243126121 @default.
- W4224312612 hasConcept C126322002 @default.
- W4224312612 hasConcept C126838900 @default.
- W4224312612 hasConcept C142724271 @default.
- W4224312612 hasConcept C146957229 @default.
- W4224312612 hasConcept C207886595 @default.
- W4224312612 hasConcept C2779159893 @default.
- W4224312612 hasConcept C2779338263 @default.
- W4224312612 hasConcept C2989005 @default.
- W4224312612 hasConcept C58471807 @default.
- W4224312612 hasConcept C71924100 @default.
- W4224312612 hasConceptScore W4224312612C126322002 @default.
- W4224312612 hasConceptScore W4224312612C126838900 @default.
- W4224312612 hasConceptScore W4224312612C142724271 @default.
- W4224312612 hasConceptScore W4224312612C146957229 @default.
- W4224312612 hasConceptScore W4224312612C207886595 @default.
- W4224312612 hasConceptScore W4224312612C2779159893 @default.
- W4224312612 hasConceptScore W4224312612C2779338263 @default.
- W4224312612 hasConceptScore W4224312612C2989005 @default.