Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224316937> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4224316937 endingPage "105550" @default.
- W4224316937 startingPage "105550" @default.
- W4224316937 abstract "Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiovascular diseases. In this study, we have developed DenseNet and CNN models for the classification of healthy subjects and patients with ten classes of MI based on the location of myocardial involvement. ECG signals from the Physikalisch-Technische Bundesanstalt database were pre-processed, and the ECG beats were extracted using an R peak detection algorithm. The beats were then fed to the two models separately. While both models attained high classification accuracies (more than 95%), DenseNet is the preferred model for the classification task due to its low computational complexity and higher classification accuracy than the CNN model due to feature reusability. An enhanced class activation mapping (CAM) technique called Grad-CAM was subsequently applied to the outputs of both models to enable visualization of the specific ECG leads and portions of ECG waves that were most influential for the predictive decisions made by the models for the 11 classes. It was observed that Lead V4 was the most activated lead in both the DenseNet and CNN models. Furthermore, this study has also established the different leads and parts of the signal that get activated for each class. This is the first study to report features that influenced the classification decisions of deep models for multiclass classification of MI and healthy ECGs. Hence this study is crucial and contributes significantly to the medical field as with some level of visible explainability of the inner workings of the models, the developed DenseNet and CNN models may garner needed clinical acceptance and have the potential to be implemented for ECG triage of MI diagnosis in hospitals and remote out-of-hospital settings." @default.
- W4224316937 created "2022-04-26" @default.
- W4224316937 creator A5031091803 @default.
- W4224316937 creator A5045783666 @default.
- W4224316937 creator A5065151840 @default.
- W4224316937 creator A5065567920 @default.
- W4224316937 creator A5072339586 @default.
- W4224316937 date "2022-07-01" @default.
- W4224316937 modified "2023-10-16" @default.
- W4224316937 title "Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals" @default.
- W4224316937 cites W161660362 @default.
- W4224316937 cites W2063923412 @default.
- W4224316937 cites W2100495367 @default.
- W4224316937 cites W2162273778 @default.
- W4224316937 cites W2162800060 @default.
- W4224316937 cites W2410695551 @default.
- W4224316937 cites W2702116941 @default.
- W4224316937 cites W2767583913 @default.
- W4224316937 cites W2804642894 @default.
- W4224316937 cites W2888673273 @default.
- W4224316937 cites W2902662000 @default.
- W4224316937 cites W2913789442 @default.
- W4224316937 cites W2914231497 @default.
- W4224316937 cites W2944352165 @default.
- W4224316937 cites W2947860185 @default.
- W4224316937 cites W2967737346 @default.
- W4224316937 cites W2980825080 @default.
- W4224316937 cites W3006339384 @default.
- W4224316937 cites W3021024438 @default.
- W4224316937 cites W3048676513 @default.
- W4224316937 cites W3087200483 @default.
- W4224316937 cites W3108118145 @default.
- W4224316937 cites W3129130955 @default.
- W4224316937 cites W3135044385 @default.
- W4224316937 cites W3162188565 @default.
- W4224316937 cites W4252019796 @default.
- W4224316937 doi "https://doi.org/10.1016/j.compbiomed.2022.105550" @default.
- W4224316937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35533457" @default.
- W4224316937 hasPublicationYear "2022" @default.
- W4224316937 type Work @default.
- W4224316937 citedByCount "35" @default.
- W4224316937 countsByYear W42243169372022 @default.
- W4224316937 countsByYear W42243169372023 @default.
- W4224316937 crossrefType "journal-article" @default.
- W4224316937 hasAuthorship W4224316937A5031091803 @default.
- W4224316937 hasAuthorship W4224316937A5045783666 @default.
- W4224316937 hasAuthorship W4224316937A5065151840 @default.
- W4224316937 hasAuthorship W4224316937A5065567920 @default.
- W4224316937 hasAuthorship W4224316937A5072339586 @default.
- W4224316937 hasBestOaLocation W42243169371 @default.
- W4224316937 hasConcept C108583219 @default.
- W4224316937 hasConcept C119857082 @default.
- W4224316937 hasConcept C12267149 @default.
- W4224316937 hasConcept C123860398 @default.
- W4224316937 hasConcept C153180895 @default.
- W4224316937 hasConcept C154945302 @default.
- W4224316937 hasConcept C164705383 @default.
- W4224316937 hasConcept C2780040984 @default.
- W4224316937 hasConcept C36464697 @default.
- W4224316937 hasConcept C41008148 @default.
- W4224316937 hasConcept C500558357 @default.
- W4224316937 hasConcept C71924100 @default.
- W4224316937 hasConcept C81363708 @default.
- W4224316937 hasConceptScore W4224316937C108583219 @default.
- W4224316937 hasConceptScore W4224316937C119857082 @default.
- W4224316937 hasConceptScore W4224316937C12267149 @default.
- W4224316937 hasConceptScore W4224316937C123860398 @default.
- W4224316937 hasConceptScore W4224316937C153180895 @default.
- W4224316937 hasConceptScore W4224316937C154945302 @default.
- W4224316937 hasConceptScore W4224316937C164705383 @default.
- W4224316937 hasConceptScore W4224316937C2780040984 @default.
- W4224316937 hasConceptScore W4224316937C36464697 @default.
- W4224316937 hasConceptScore W4224316937C41008148 @default.
- W4224316937 hasConceptScore W4224316937C500558357 @default.
- W4224316937 hasConceptScore W4224316937C71924100 @default.
- W4224316937 hasConceptScore W4224316937C81363708 @default.
- W4224316937 hasLocation W42243169371 @default.
- W4224316937 hasLocation W42243169372 @default.
- W4224316937 hasOpenAccess W4224316937 @default.
- W4224316937 hasPrimaryLocation W42243169371 @default.
- W4224316937 hasRelatedWork W2337926734 @default.
- W4224316937 hasRelatedWork W2732542196 @default.
- W4224316937 hasRelatedWork W2738221750 @default.
- W4224316937 hasRelatedWork W2963958939 @default.
- W4224316937 hasRelatedWork W3173182854 @default.
- W4224316937 hasRelatedWork W4311257506 @default.
- W4224316937 hasRelatedWork W4319994054 @default.
- W4224316937 hasRelatedWork W4320802194 @default.
- W4224316937 hasRelatedWork W4366224123 @default.
- W4224316937 hasRelatedWork W564581980 @default.
- W4224316937 hasVolume "146" @default.
- W4224316937 isParatext "false" @default.
- W4224316937 isRetracted "false" @default.
- W4224316937 workType "article" @default.