Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224317209> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4224317209 endingPage "2033" @default.
- W4224317209 startingPage "2033" @default.
- W4224317209 abstract "In this paper, we present a challenging stereo-inertial dataset collected onboard a sports utility vehicle (SUV) for the tasks of visual-inertial odometry (VIO), simultaneous localization and mapping (SLAM), autonomous driving, object detection, and other computer vision techniques. We recorded a large set of time-synchronized stereo image sequences (2 × 1280 × 720 @ 30 fps RGB) and corresponding inertial measurement unit (IMU) readings (400 Hz) from a Stereolabs ZED2 camera, along with centimeter-level-accurate six-degree-of-freedom ground truth (100 Hz) from a u-blox GNSS-IMU navigation device with real-time kinematic correction signals. The dataset comprises 34 sequences recorded during November 2020 in Wuhan, the largest city of Central China. Further, the dataset contains abundant unique urban scenes and features of a complex modern metropolis, which have rarely appeared in previously released benchmarks. Results from milestone VIO/SLAM algorithms reveal that methods exhibiting excellent performance on established datasets such as KITTI and EuRoC perform unsatisfactorily when moved outside the laboratory to the real world. We expect our dataset to reduce this limitation by providing more challenging and diverse scenarios to the research community. The full dataset with raw and calibrated data is publicly available along with a lightweight MATLAB/Python toolbox for preprocessing and evaluation. The dataset can be downloaded in its entirety from the uniform resource locator (URL) we provide in the main text." @default.
- W4224317209 created "2022-04-26" @default.
- W4224317209 creator A5007054845 @default.
- W4224317209 creator A5012653240 @default.
- W4224317209 creator A5074797391 @default.
- W4224317209 creator A5081961287 @default.
- W4224317209 date "2022-04-23" @default.
- W4224317209 modified "2023-10-01" @default.
- W4224317209 title "WHUVID: A Large-Scale Stereo-IMU Dataset for Visual-Inertial Odometry and Autonomous Driving in Chinese Urban Scenarios" @default.
- W4224317209 cites W1981983914 @default.
- W4224317209 cites W1995963656 @default.
- W4224317209 cites W2091790851 @default.
- W4224317209 cites W2115579991 @default.
- W4224317209 cites W2127578024 @default.
- W4224317209 cites W2146881125 @default.
- W4224317209 cites W2152671441 @default.
- W4224317209 cites W2155695215 @default.
- W4224317209 cites W2166132830 @default.
- W4224317209 cites W2335829695 @default.
- W4224317209 cites W2396274919 @default.
- W4224317209 cites W2544243493 @default.
- W4224317209 cites W2558027072 @default.
- W4224317209 cites W2604579016 @default.
- W4224317209 cites W2739413041 @default.
- W4224317209 cites W2745859992 @default.
- W4224317209 cites W2764315368 @default.
- W4224317209 cites W2773327434 @default.
- W4224317209 cites W2784988069 @default.
- W4224317209 cites W2785582094 @default.
- W4224317209 cites W2789621390 @default.
- W4224317209 cites W2938170127 @default.
- W4224317209 cites W3100009925 @default.
- W4224317209 cites W3102327032 @default.
- W4224317209 cites W3103648783 @default.
- W4224317209 cites W3106458387 @default.
- W4224317209 cites W3124420883 @default.
- W4224317209 cites W3165610079 @default.
- W4224317209 doi "https://doi.org/10.3390/rs14092033" @default.
- W4224317209 hasPublicationYear "2022" @default.
- W4224317209 type Work @default.
- W4224317209 citedByCount "3" @default.
- W4224317209 countsByYear W42243172092023 @default.
- W4224317209 crossrefType "journal-article" @default.
- W4224317209 hasAuthorship W4224317209A5007054845 @default.
- W4224317209 hasAuthorship W4224317209A5012653240 @default.
- W4224317209 hasAuthorship W4224317209A5074797391 @default.
- W4224317209 hasAuthorship W4224317209A5081961287 @default.
- W4224317209 hasBestOaLocation W42243172091 @default.
- W4224317209 hasConcept C154945302 @default.
- W4224317209 hasConcept C185078393 @default.
- W4224317209 hasConcept C19966478 @default.
- W4224317209 hasConcept C31972630 @default.
- W4224317209 hasConcept C34736171 @default.
- W4224317209 hasConcept C41008148 @default.
- W4224317209 hasConcept C49441653 @default.
- W4224317209 hasConcept C79061980 @default.
- W4224317209 hasConcept C90509273 @default.
- W4224317209 hasConceptScore W4224317209C154945302 @default.
- W4224317209 hasConceptScore W4224317209C185078393 @default.
- W4224317209 hasConceptScore W4224317209C19966478 @default.
- W4224317209 hasConceptScore W4224317209C31972630 @default.
- W4224317209 hasConceptScore W4224317209C34736171 @default.
- W4224317209 hasConceptScore W4224317209C41008148 @default.
- W4224317209 hasConceptScore W4224317209C49441653 @default.
- W4224317209 hasConceptScore W4224317209C79061980 @default.
- W4224317209 hasConceptScore W4224317209C90509273 @default.
- W4224317209 hasFunder F4320335777 @default.
- W4224317209 hasIssue "9" @default.
- W4224317209 hasLocation W42243172091 @default.
- W4224317209 hasOpenAccess W4224317209 @default.
- W4224317209 hasPrimaryLocation W42243172091 @default.
- W4224317209 hasRelatedWork W1788965345 @default.
- W4224317209 hasRelatedWork W2117488557 @default.
- W4224317209 hasRelatedWork W2411412724 @default.
- W4224317209 hasRelatedWork W2540925674 @default.
- W4224317209 hasRelatedWork W2810697792 @default.
- W4224317209 hasRelatedWork W3003695190 @default.
- W4224317209 hasRelatedWork W3107115059 @default.
- W4224317209 hasRelatedWork W4285265093 @default.
- W4224317209 hasRelatedWork W4285389770 @default.
- W4224317209 hasRelatedWork W4383748483 @default.
- W4224317209 hasVolume "14" @default.
- W4224317209 isParatext "false" @default.
- W4224317209 isRetracted "false" @default.
- W4224317209 workType "article" @default.