Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224320672> ?p ?o ?g. }
- W4224320672 endingPage "3269" @default.
- W4224320672 startingPage "3269" @default.
- W4224320672 abstract "Resilient cities incorporate a social, ecological, and technological systems perspective through their trees, both in urban and peri-urban forests and linear street trees, and help promote and understand the concept of ecosystem resilience. Urban tree inventories usually involve the collection of field data on the location, genus, species, crown shape and volume, diameter, height, and health status of these trees. In this work, we have developed a multi-stage methodology to update urban tree inventories in a fully automatic way, and we have applied it in the city of Pamplona (Spain). We have compared and combined two of the most common data sources for updating urban tree inventories: Airborne Laser Scanning (ALS) point clouds combined with aerial orthophotographs, and street-level imagery from Google Street View (GSV). Depending on the data source, different methodologies were used to identify the trees. In the first stage, the use of individual tree detection techniques in ALS point clouds was compared with the detection of objects (trees) on street level images using computer vision (CV) techniques. In both cases, a high success rate or recall (number of true positive with respect to all detectable trees) was obtained, where between 85.07% and 86.42% of the trees were well-identified, although many false positives (FPs) or trees that did not exist or that had been confused with other objects were always identified. In order to reduce these errors or FPs, a second stage was designed, where FP debugging was performed through two methodologies: (a) based on the automatic checking of all possible trees with street level images, and (b) through a machine learning binary classification model trained with spectral data from orthophotographs. After this second stage, the recall decreased to about 75% (between 71.43 and 78.18 depending on the procedure used) but most of the false positives were eliminated. The results obtained with both data sources were robust and accurate. We can conclude that the results obtained with the different methodologies are very similar, where the main difference resides in the access to the starting information. While the use of street-level images only allows for the detection of trees growing in trafficable streets and is a source of information that is usually paid for, the use of ALS and aerial orthophotographs allows for the location of trees anywhere in the city, including public and private parks and gardens, and in many countries, these data are freely available." @default.
- W4224320672 created "2022-04-26" @default.
- W4224320672 creator A5016207668 @default.
- W4224320672 creator A5038211558 @default.
- W4224320672 creator A5038251959 @default.
- W4224320672 creator A5043699974 @default.
- W4224320672 creator A5069895363 @default.
- W4224320672 date "2022-04-24" @default.
- W4224320672 modified "2023-10-03" @default.
- W4224320672 title "Mapping Tree Canopy in Urban Environments Using Point Clouds from Airborne Laser Scanning and Street Level Imagery" @default.
- W4224320672 cites W1831050183 @default.
- W4224320672 cites W1923561164 @default.
- W4224320672 cites W1975027286 @default.
- W4224320672 cites W1978683887 @default.
- W4224320672 cites W1984839778 @default.
- W4224320672 cites W1990503995 @default.
- W4224320672 cites W2033827163 @default.
- W4224320672 cites W2040827641 @default.
- W4224320672 cites W2043516695 @default.
- W4224320672 cites W2065258204 @default.
- W4224320672 cites W2075715210 @default.
- W4224320672 cites W2092491956 @default.
- W4224320672 cites W2122400352 @default.
- W4224320672 cites W2126058313 @default.
- W4224320672 cites W2132097058 @default.
- W4224320672 cites W2138126656 @default.
- W4224320672 cites W2147197400 @default.
- W4224320672 cites W2158411533 @default.
- W4224320672 cites W2159105546 @default.
- W4224320672 cites W2163127636 @default.
- W4224320672 cites W2180526376 @default.
- W4224320672 cites W2315994349 @default.
- W4224320672 cites W2331594254 @default.
- W4224320672 cites W2336012816 @default.
- W4224320672 cites W2466959383 @default.
- W4224320672 cites W2522940576 @default.
- W4224320672 cites W2549775754 @default.
- W4224320672 cites W2554927705 @default.
- W4224320672 cites W2557117995 @default.
- W4224320672 cites W2578619259 @default.
- W4224320672 cites W2617647211 @default.
- W4224320672 cites W2751293097 @default.
- W4224320672 cites W2752278344 @default.
- W4224320672 cites W2762186317 @default.
- W4224320672 cites W2771056443 @default.
- W4224320672 cites W2794284562 @default.
- W4224320672 cites W2799461311 @default.
- W4224320672 cites W2806070179 @default.
- W4224320672 cites W2885349604 @default.
- W4224320672 cites W2889908591 @default.
- W4224320672 cites W2890178063 @default.
- W4224320672 cites W2903963188 @default.
- W4224320672 cites W2904375896 @default.
- W4224320672 cites W2936114887 @default.
- W4224320672 cites W2936975373 @default.
- W4224320672 cites W2940726923 @default.
- W4224320672 cites W2948990870 @default.
- W4224320672 cites W2951674790 @default.
- W4224320672 cites W2964293146 @default.
- W4224320672 cites W3006821890 @default.
- W4224320672 cites W3012039216 @default.
- W4224320672 cites W3035761019 @default.
- W4224320672 cites W3088507381 @default.
- W4224320672 cites W3090970712 @default.
- W4224320672 cites W3137256305 @default.
- W4224320672 cites W3178743083 @default.
- W4224320672 cites W3188196118 @default.
- W4224320672 cites W3197061959 @default.
- W4224320672 cites W3199488171 @default.
- W4224320672 cites W3200733324 @default.
- W4224320672 cites W631895740 @default.
- W4224320672 cites W793093014 @default.
- W4224320672 doi "https://doi.org/10.3390/s22093269" @default.
- W4224320672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35590958" @default.
- W4224320672 hasPublicationYear "2022" @default.
- W4224320672 type Work @default.
- W4224320672 citedByCount "3" @default.
- W4224320672 countsByYear W42243206722022 @default.
- W4224320672 countsByYear W42243206722023 @default.
- W4224320672 crossrefType "journal-article" @default.
- W4224320672 hasAuthorship W4224320672A5016207668 @default.
- W4224320672 hasAuthorship W4224320672A5038211558 @default.
- W4224320672 hasAuthorship W4224320672A5038251959 @default.
- W4224320672 hasAuthorship W4224320672A5043699974 @default.
- W4224320672 hasAuthorship W4224320672A5069895363 @default.
- W4224320672 hasBestOaLocation W42243206721 @default.
- W4224320672 hasConcept C101000010 @default.
- W4224320672 hasConcept C113174947 @default.
- W4224320672 hasConcept C120665830 @default.
- W4224320672 hasConcept C121332964 @default.
- W4224320672 hasConcept C131979681 @default.
- W4224320672 hasConcept C134306372 @default.
- W4224320672 hasConcept C141349535 @default.
- W4224320672 hasConcept C154945302 @default.
- W4224320672 hasConcept C166957645 @default.
- W4224320672 hasConcept C205649164 @default.
- W4224320672 hasConcept C2776426263 @default.
- W4224320672 hasConcept C2780977904 @default.