Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224323786> ?p ?o ?g. }
- W4224323786 endingPage "119208" @default.
- W4224323786 startingPage "119208" @default.
- W4224323786 abstract "Salsalate solubility in supercritical carbon dioxide was studied in this research by computational simulation to correlate the solubility to input parameters including temperature and pressure. A dataset was collected from resources and the models were correlated to the data. Both training and validation steps have been performed to implement the computational tasks. Indeed, we are dealing with a dataset with two P and T inputs and one output (drug solubility), and 32 data points. We chose three models based on Gaussian Process Regression (GPR) including simple (raw) GPR, Ada-boosted GPR, and Bagged GPR as two ensemble methods for correlation of the solubility data. All hyper-parameters were tuned for more general models and models evaluated with standard metrics. The GPR, Adaboost + GPR, and Bagging + GPR have scores of 0.9779, 0.9992, and 0.9795 using R-squared, respectively. Also, in terms of RMSE models have error rates of 1.25 × 10−4, 1.20 × 10−4, and 1.29 × 10−4, respectively. Finally, considering the standard criteria and visual analysis, the boosted GPR model is selected as the main model. The optimal values found as (P = 400, T = 338.0, Y = 0.003879)." @default.
- W4224323786 created "2022-04-26" @default.
- W4224323786 creator A5002392709 @default.
- W4224323786 creator A5036128770 @default.
- W4224323786 creator A5039706337 @default.
- W4224323786 creator A5056985424 @default.
- W4224323786 creator A5069252301 @default.
- W4224323786 date "2022-07-01" @default.
- W4224323786 modified "2023-10-18" @default.
- W4224323786 title "Development and validation of machine learning models for prediction of nanomedicine solubility in supercritical solvent for advanced pharmaceutical manufacturing" @default.
- W4224323786 cites W1975846642 @default.
- W4224323786 cites W1985442999 @default.
- W4224323786 cites W2079078736 @default.
- W4224323786 cites W2089536636 @default.
- W4224323786 cites W2115870554 @default.
- W4224323786 cites W2162059449 @default.
- W4224323786 cites W2297152540 @default.
- W4224323786 cites W2327035729 @default.
- W4224323786 cites W2520327139 @default.
- W4224323786 cites W2529967764 @default.
- W4224323786 cites W2584226333 @default.
- W4224323786 cites W2769055312 @default.
- W4224323786 cites W2779263281 @default.
- W4224323786 cites W2792457668 @default.
- W4224323786 cites W2804446681 @default.
- W4224323786 cites W2807044567 @default.
- W4224323786 cites W2885964982 @default.
- W4224323786 cites W2898434516 @default.
- W4224323786 cites W2900694973 @default.
- W4224323786 cites W2913654709 @default.
- W4224323786 cites W2916397243 @default.
- W4224323786 cites W2948101451 @default.
- W4224323786 cites W2956362927 @default.
- W4224323786 cites W2973817809 @default.
- W4224323786 cites W2989534891 @default.
- W4224323786 cites W2989655268 @default.
- W4224323786 cites W3010077437 @default.
- W4224323786 cites W3010872378 @default.
- W4224323786 cites W3015723457 @default.
- W4224323786 cites W3022704604 @default.
- W4224323786 cites W3036246077 @default.
- W4224323786 cites W3040990375 @default.
- W4224323786 cites W3046646949 @default.
- W4224323786 cites W3082628513 @default.
- W4224323786 cites W3093147809 @default.
- W4224323786 cites W3103060790 @default.
- W4224323786 cites W3118453212 @default.
- W4224323786 cites W3120624706 @default.
- W4224323786 cites W3125850143 @default.
- W4224323786 cites W3138523388 @default.
- W4224323786 cites W3155519636 @default.
- W4224323786 cites W3169726955 @default.
- W4224323786 cites W3170024756 @default.
- W4224323786 cites W3170674899 @default.
- W4224323786 cites W3176873722 @default.
- W4224323786 cites W3177418934 @default.
- W4224323786 cites W3178597066 @default.
- W4224323786 cites W3180894256 @default.
- W4224323786 cites W3200224875 @default.
- W4224323786 cites W3201280187 @default.
- W4224323786 cites W3203894701 @default.
- W4224323786 cites W3205037627 @default.
- W4224323786 cites W3206176644 @default.
- W4224323786 cites W3209818289 @default.
- W4224323786 cites W3212283472 @default.
- W4224323786 cites W3214660137 @default.
- W4224323786 cites W3216321544 @default.
- W4224323786 cites W4205871824 @default.
- W4224323786 cites W4212883601 @default.
- W4224323786 cites W4214815450 @default.
- W4224323786 cites W4220768939 @default.
- W4224323786 cites W4220857954 @default.
- W4224323786 cites W4221039010 @default.
- W4224323786 doi "https://doi.org/10.1016/j.molliq.2022.119208" @default.
- W4224323786 hasPublicationYear "2022" @default.
- W4224323786 type Work @default.
- W4224323786 citedByCount "10" @default.
- W4224323786 countsByYear W42243237862022 @default.
- W4224323786 countsByYear W42243237862023 @default.
- W4224323786 crossrefType "journal-article" @default.
- W4224323786 hasAuthorship W4224323786A5002392709 @default.
- W4224323786 hasAuthorship W4224323786A5036128770 @default.
- W4224323786 hasAuthorship W4224323786A5039706337 @default.
- W4224323786 hasAuthorship W4224323786A5056985424 @default.
- W4224323786 hasAuthorship W4224323786A5069252301 @default.
- W4224323786 hasConcept C105795698 @default.
- W4224323786 hasConcept C118419359 @default.
- W4224323786 hasConcept C119857082 @default.
- W4224323786 hasConcept C139945424 @default.
- W4224323786 hasConcept C154945302 @default.
- W4224323786 hasConcept C155574463 @default.
- W4224323786 hasConcept C178790620 @default.
- W4224323786 hasConcept C185592680 @default.
- W4224323786 hasConcept C33923547 @default.
- W4224323786 hasConcept C41008148 @default.
- W4224323786 hasConcept C81692654 @default.
- W4224323786 hasConceptScore W4224323786C105795698 @default.
- W4224323786 hasConceptScore W4224323786C118419359 @default.