Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224324510> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4224324510 abstract "Abstract Rock facies are typically identified either by core analysis to provide visually interpreted lithofacies, or determined indirectly based on suites of recorded well-log data, thereby generating electrofacies interpretations. Since the lithofacies cannot be obtained for all reservoir intervals, drilled section and/or wells, it is commonly essential to model the discrete lithofacies as a function of well-log data (electrofacies) to predict the poorly sampled or non-cored intervals. The process is called predictive lithofacies classification. In this study, measured discrete lithofacies distributions (based on core data) are comparatively modeled with well-log data using two tree-based ensemble algorithms: extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost) configured as classifiers. The predicted lithofacies are then combined with recorded well-log data for analysis by an XGBoost regression model to predict permeability. The input well-log variables are log porosity, gamma ray, water saturation, neutron porosity, deep resistivity, and bulk density. The data are derived from the Mishrif carbonate reservoir in a giant southern Iraqi oil field. For efficient lithofacies classification and permeability modelling, random sub-sampling cross-validation was applied to the well-log dataset to generate two subsets: training subset for model tuning; and testing subset for prediction of data points unseen during training of the model. Confusion matrices and the total correct percentage (TCP) of predictions are used to measure the prediction performance of each algorithm to identify the most realistic lithofacies classification. The TCPs for XGBoost and AdaBoost classifiers for the training subset were 98% and 100%, respectively. However, the TCPs achieved for the testing subsets were 97%, and 96%, respectively. The mismatch between the measured and predicted permeability from the XGBoost regressor was determined using root mean square error. The XGBoost model provides accurate lithofacies classification and permeability predictions of the cored data. The XGBoost model is therefore considered suitable for providing reliable predictions of lithofacies and permeability for the non-cored intervals of the same well and for non-cored wells in the studied reservoir. The workflow for lithofacies and permeability prediction was fully implemented and visualized using R open-source codes." @default.
- W4224324510 created "2022-04-26" @default.
- W4224324510 creator A5027047123 @default.
- W4224324510 creator A5028777364 @default.
- W4224324510 date "2022-04-25" @default.
- W4224324510 modified "2023-10-16" @default.
- W4224324510 title "Tree-Based Ensemble Algorithms for Lithofacies Classification and Permeability Prediction in Heterogeneous Carbonate Reservoirs" @default.
- W4224324510 cites W1032391172 @default.
- W4224324510 cites W1978491722 @default.
- W4224324510 cites W2057188495 @default.
- W4224324510 cites W2060901857 @default.
- W4224324510 cites W2077450748 @default.
- W4224324510 cites W2551971519 @default.
- W4224324510 cites W2626176756 @default.
- W4224324510 cites W2762445688 @default.
- W4224324510 cites W2937300184 @default.
- W4224324510 cites W2972085911 @default.
- W4224324510 cites W2981180140 @default.
- W4224324510 cites W3010650557 @default.
- W4224324510 cites W3013598746 @default.
- W4224324510 cites W3155891128 @default.
- W4224324510 cites W3174924387 @default.
- W4224324510 cites W3198221545 @default.
- W4224324510 cites W4206386873 @default.
- W4224324510 cites W4206558526 @default.
- W4224324510 doi "https://doi.org/10.4043/31780-ms" @default.
- W4224324510 hasPublicationYear "2022" @default.
- W4224324510 type Work @default.
- W4224324510 citedByCount "4" @default.
- W4224324510 countsByYear W42243245102022 @default.
- W4224324510 countsByYear W42243245102023 @default.
- W4224324510 crossrefType "proceedings-article" @default.
- W4224324510 hasAuthorship W4224324510A5027047123 @default.
- W4224324510 hasAuthorship W4224324510A5028777364 @default.
- W4224324510 hasConcept C109007969 @default.
- W4224324510 hasConcept C11413529 @default.
- W4224324510 hasConcept C114793014 @default.
- W4224324510 hasConcept C12267149 @default.
- W4224324510 hasConcept C124101348 @default.
- W4224324510 hasConcept C127313418 @default.
- W4224324510 hasConcept C141404830 @default.
- W4224324510 hasConcept C146588470 @default.
- W4224324510 hasConcept C153180895 @default.
- W4224324510 hasConcept C154945302 @default.
- W4224324510 hasConcept C169258074 @default.
- W4224324510 hasConcept C35817400 @default.
- W4224324510 hasConcept C41008148 @default.
- W4224324510 hasConcept C45942800 @default.
- W4224324510 hasConcept C46686674 @default.
- W4224324510 hasConcept C8058405 @default.
- W4224324510 hasConcept C84525736 @default.
- W4224324510 hasConceptScore W4224324510C109007969 @default.
- W4224324510 hasConceptScore W4224324510C11413529 @default.
- W4224324510 hasConceptScore W4224324510C114793014 @default.
- W4224324510 hasConceptScore W4224324510C12267149 @default.
- W4224324510 hasConceptScore W4224324510C124101348 @default.
- W4224324510 hasConceptScore W4224324510C127313418 @default.
- W4224324510 hasConceptScore W4224324510C141404830 @default.
- W4224324510 hasConceptScore W4224324510C146588470 @default.
- W4224324510 hasConceptScore W4224324510C153180895 @default.
- W4224324510 hasConceptScore W4224324510C154945302 @default.
- W4224324510 hasConceptScore W4224324510C169258074 @default.
- W4224324510 hasConceptScore W4224324510C35817400 @default.
- W4224324510 hasConceptScore W4224324510C41008148 @default.
- W4224324510 hasConceptScore W4224324510C45942800 @default.
- W4224324510 hasConceptScore W4224324510C46686674 @default.
- W4224324510 hasConceptScore W4224324510C8058405 @default.
- W4224324510 hasConceptScore W4224324510C84525736 @default.
- W4224324510 hasLocation W42243245101 @default.
- W4224324510 hasOpenAccess W4224324510 @default.
- W4224324510 hasPrimaryLocation W42243245101 @default.
- W4224324510 hasRelatedWork W2008326909 @default.
- W4224324510 hasRelatedWork W2284947050 @default.
- W4224324510 hasRelatedWork W2340694410 @default.
- W4224324510 hasRelatedWork W2561438160 @default.
- W4224324510 hasRelatedWork W3100297620 @default.
- W4224324510 hasRelatedWork W3107479743 @default.
- W4224324510 hasRelatedWork W3126015411 @default.
- W4224324510 hasRelatedWork W4246172529 @default.
- W4224324510 hasRelatedWork W4293069612 @default.
- W4224324510 hasRelatedWork W4298012357 @default.
- W4224324510 isParatext "false" @default.
- W4224324510 isRetracted "false" @default.
- W4224324510 workType "article" @default.