Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224326511> ?p ?o ?g. }
- W4224326511 endingPage "1988" @default.
- W4224326511 startingPage "1988" @default.
- W4224326511 abstract "Algal blooms frequently occur in numerous lakes in China, risking human health and the environment. In contrast, aquatic vegetation contributes to water purification. Due to the similar spectral characteristics shared by algal and aquatic vegetation, both are hardly distinguishable in remote sensing imaging, especially in turbid water bodies. To address this challenge, this study constructed a method to effectively extract algal blooms and aquatic vegetation from the turbid water bodies using Sentinel 2 images with high spatial resolution. Our results showed that the accuracy of the extraction of vegetation information could reach 96.1%. Since this method combined the vegetation extraction results from multiple indices, it effectively tackled the mis-extraction when only the Floating Algae Index (FAI) or the Normalized Difference Vegetation Index (NDVI) is used in water with high turbidity. By combining the image time series information with the natural phenological characteristics of the aquatic vegetation and algal blooms, an improved Vegetation Presence Frequency (VPF) was developed. It effectively distinguished algal blooms and aquatic vegetation without actual measurement data. Based on the above method and process, the information of algal blooms and aquatic vegetation was sufficiently distinguished in five typical lakes in China (Lake Hulun, Lake Hongze, Lake Chaohu, Lake Taihu, and Lake Dianchi), and the spatial distribution was reasonably mapped. The overall identification accuracy of aquatic vegetation and algal blooms using the improved VPF ranged 71.8–84.3%. The spatial transferability test of the method in the independent lakes with the various optical properties indicated the prospects of its application in other turbid water bodies. This study should provide strong methodological and theoretical support for future monitoring of algal blooms in turbid water bodies with vigorous aquatic vegetation, especially in the absence of actual measurement data. This should have practical relevance for water environment management and governance departments." @default.
- W4224326511 created "2022-04-26" @default.
- W4224326511 creator A5028724918 @default.
- W4224326511 creator A5034134503 @default.
- W4224326511 creator A5045891192 @default.
- W4224326511 creator A5059748471 @default.
- W4224326511 creator A5063761923 @default.
- W4224326511 creator A5064376545 @default.
- W4224326511 creator A5075438340 @default.
- W4224326511 date "2022-04-21" @default.
- W4224326511 modified "2023-10-16" @default.
- W4224326511 title "Distinguishing Algal Blooms from Aquatic Vegetation in Chinese Lakes Using Sentinel 2 Image" @default.
- W4224326511 cites W1554089121 @default.
- W4224326511 cites W1963487623 @default.
- W4224326511 cites W1966197059 @default.
- W4224326511 cites W1975816373 @default.
- W4224326511 cites W1977497970 @default.
- W4224326511 cites W1978617972 @default.
- W4224326511 cites W1984514811 @default.
- W4224326511 cites W1988211208 @default.
- W4224326511 cites W2005413824 @default.
- W4224326511 cites W2042913559 @default.
- W4224326511 cites W2063906281 @default.
- W4224326511 cites W2069429069 @default.
- W4224326511 cites W2071902553 @default.
- W4224326511 cites W2075784822 @default.
- W4224326511 cites W2077509829 @default.
- W4224326511 cites W2089602228 @default.
- W4224326511 cites W2090157291 @default.
- W4224326511 cites W2101400989 @default.
- W4224326511 cites W2103661636 @default.
- W4224326511 cites W2113410727 @default.
- W4224326511 cites W2130224648 @default.
- W4224326511 cites W2136481891 @default.
- W4224326511 cites W2136758825 @default.
- W4224326511 cites W2195352021 @default.
- W4224326511 cites W2347420599 @default.
- W4224326511 cites W2378149430 @default.
- W4224326511 cites W2477980398 @default.
- W4224326511 cites W2569971772 @default.
- W4224326511 cites W2574793562 @default.
- W4224326511 cites W2587371805 @default.
- W4224326511 cites W2725897987 @default.
- W4224326511 cites W2762692548 @default.
- W4224326511 cites W2906789880 @default.
- W4224326511 cites W2917372880 @default.
- W4224326511 cites W2979808541 @default.
- W4224326511 cites W2985147376 @default.
- W4224326511 cites W3014447972 @default.
- W4224326511 cites W3081293412 @default.
- W4224326511 cites W3085714248 @default.
- W4224326511 cites W3112679661 @default.
- W4224326511 cites W3121665539 @default.
- W4224326511 cites W3129522569 @default.
- W4224326511 cites W3160583176 @default.
- W4224326511 cites W3165870068 @default.
- W4224326511 cites W4252196154 @default.
- W4224326511 doi "https://doi.org/10.3390/rs14091988" @default.
- W4224326511 hasPublicationYear "2022" @default.
- W4224326511 type Work @default.
- W4224326511 citedByCount "12" @default.
- W4224326511 countsByYear W42243265112022 @default.
- W4224326511 countsByYear W42243265112023 @default.
- W4224326511 crossrefType "journal-article" @default.
- W4224326511 hasAuthorship W4224326511A5028724918 @default.
- W4224326511 hasAuthorship W4224326511A5034134503 @default.
- W4224326511 hasAuthorship W4224326511A5045891192 @default.
- W4224326511 hasAuthorship W4224326511A5059748471 @default.
- W4224326511 hasAuthorship W4224326511A5063761923 @default.
- W4224326511 hasAuthorship W4224326511A5064376545 @default.
- W4224326511 hasAuthorship W4224326511A5075438340 @default.
- W4224326511 hasBestOaLocation W42243265111 @default.
- W4224326511 hasConcept C100970517 @default.
- W4224326511 hasConcept C111368507 @default.
- W4224326511 hasConcept C120305227 @default.
- W4224326511 hasConcept C127313418 @default.
- W4224326511 hasConcept C132000320 @default.
- W4224326511 hasConcept C132651083 @default.
- W4224326511 hasConcept C142724271 @default.
- W4224326511 hasConcept C142796444 @default.
- W4224326511 hasConcept C1549246 @default.
- W4224326511 hasConcept C175327387 @default.
- W4224326511 hasConcept C187320778 @default.
- W4224326511 hasConcept C18903297 @default.
- W4224326511 hasConcept C205649164 @default.
- W4224326511 hasConcept C2776133958 @default.
- W4224326511 hasConcept C2780892065 @default.
- W4224326511 hasConcept C34771814 @default.
- W4224326511 hasConcept C39432304 @default.
- W4224326511 hasConcept C62649853 @default.
- W4224326511 hasConcept C64016661 @default.
- W4224326511 hasConcept C71924100 @default.
- W4224326511 hasConcept C76886044 @default.
- W4224326511 hasConcept C86803240 @default.
- W4224326511 hasConceptScore W4224326511C100970517 @default.
- W4224326511 hasConceptScore W4224326511C111368507 @default.
- W4224326511 hasConceptScore W4224326511C120305227 @default.
- W4224326511 hasConceptScore W4224326511C127313418 @default.