Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224330071> ?p ?o ?g. }
- W4224330071 abstract "Machine learning methods and uncertainty quantification have been gaining interest throughout the last several years in low-energy nuclear physics. In particular, Gaussian processes and Bayesian Neural Networks have increasingly been applied to improve mass model predictions while providing well-quantified uncertainties. In this work, we use the probabilistic Mixture Density Network (MDN) to directly predict the mass excess of the 2016 Atomic Mass Evaluation within the range of measured data, and we extrapolate the inferred models beyond available experimental data. The MDN not only provides mean values but also full posterior distributions both within the training set and extrapolated testing set. We show that the addition of physical information to the feature space increases the accuracy of the match to the training data as well as provides for more physically meaningful extrapolations beyond the the limits of experimental data." @default.
- W4224330071 created "2022-04-26" @default.
- W4224330071 creator A5001690676 @default.
- W4224330071 creator A5007785750 @default.
- W4224330071 creator A5058405322 @default.
- W4224330071 creator A5078857500 @default.
- W4224330071 date "2022-07-13" @default.
- W4224330071 modified "2023-10-07" @default.
- W4224330071 title "Nuclear masses learned from a probabilistic neural network" @default.
- W4224330071 cites W192170068 @default.
- W4224330071 cites W1941114438 @default.
- W4224330071 cites W1946796168 @default.
- W4224330071 cites W1980968085 @default.
- W4224330071 cites W1993973310 @default.
- W4224330071 cites W2027664404 @default.
- W4224330071 cites W2028736041 @default.
- W4224330071 cites W2035571854 @default.
- W4224330071 cites W2039930494 @default.
- W4224330071 cites W2046273913 @default.
- W4224330071 cites W2075323003 @default.
- W4224330071 cites W2077860263 @default.
- W4224330071 cites W2080170223 @default.
- W4224330071 cites W2109415008 @default.
- W4224330071 cites W2111746204 @default.
- W4224330071 cites W2151697855 @default.
- W4224330071 cites W2173821512 @default.
- W4224330071 cites W2228276076 @default.
- W4224330071 cites W2304799580 @default.
- W4224330071 cites W2342642840 @default.
- W4224330071 cites W2552865273 @default.
- W4224330071 cites W2608703652 @default.
- W4224330071 cites W2770251224 @default.
- W4224330071 cites W2784128215 @default.
- W4224330071 cites W2806629281 @default.
- W4224330071 cites W2896317795 @default.
- W4224330071 cites W2911716923 @default.
- W4224330071 cites W2944091050 @default.
- W4224330071 cites W2945448448 @default.
- W4224330071 cites W2951597345 @default.
- W4224330071 cites W2974085553 @default.
- W4224330071 cites W2981869667 @default.
- W4224330071 cites W2996187552 @default.
- W4224330071 cites W2998313242 @default.
- W4224330071 cites W3000745692 @default.
- W4224330071 cites W3016442659 @default.
- W4224330071 cites W3019101549 @default.
- W4224330071 cites W3019832623 @default.
- W4224330071 cites W3021935364 @default.
- W4224330071 cites W3033022132 @default.
- W4224330071 cites W3039413658 @default.
- W4224330071 cites W3097981410 @default.
- W4224330071 cites W3099452017 @default.
- W4224330071 cites W3099564741 @default.
- W4224330071 cites W3100915065 @default.
- W4224330071 cites W3103764524 @default.
- W4224330071 cites W3111969663 @default.
- W4224330071 cites W3175589346 @default.
- W4224330071 cites W4200096039 @default.
- W4224330071 cites W610011498 @default.
- W4224330071 cites W84220242 @default.
- W4224330071 doi "https://doi.org/10.1103/physrevc.106.014305" @default.
- W4224330071 hasPublicationYear "2022" @default.
- W4224330071 type Work @default.
- W4224330071 citedByCount "10" @default.
- W4224330071 countsByYear W42243300712022 @default.
- W4224330071 countsByYear W42243300712023 @default.
- W4224330071 crossrefType "journal-article" @default.
- W4224330071 hasAuthorship W4224330071A5001690676 @default.
- W4224330071 hasAuthorship W4224330071A5007785750 @default.
- W4224330071 hasAuthorship W4224330071A5058405322 @default.
- W4224330071 hasAuthorship W4224330071A5078857500 @default.
- W4224330071 hasBestOaLocation W42243300713 @default.
- W4224330071 hasConcept C107673813 @default.
- W4224330071 hasConcept C119857082 @default.
- W4224330071 hasConcept C121332964 @default.
- W4224330071 hasConcept C121864883 @default.
- W4224330071 hasConcept C152568617 @default.
- W4224330071 hasConcept C154945302 @default.
- W4224330071 hasConcept C159985019 @default.
- W4224330071 hasConcept C163716315 @default.
- W4224330071 hasConcept C177264268 @default.
- W4224330071 hasConcept C185544564 @default.
- W4224330071 hasConcept C192562407 @default.
- W4224330071 hasConcept C199360897 @default.
- W4224330071 hasConcept C204323151 @default.
- W4224330071 hasConcept C2779281675 @default.
- W4224330071 hasConcept C41008148 @default.
- W4224330071 hasConcept C49937458 @default.
- W4224330071 hasConcept C50644808 @default.
- W4224330071 hasConcept C58489278 @default.
- W4224330071 hasConcept C62520636 @default.
- W4224330071 hasConceptScore W4224330071C107673813 @default.
- W4224330071 hasConceptScore W4224330071C119857082 @default.
- W4224330071 hasConceptScore W4224330071C121332964 @default.
- W4224330071 hasConceptScore W4224330071C121864883 @default.
- W4224330071 hasConceptScore W4224330071C152568617 @default.
- W4224330071 hasConceptScore W4224330071C154945302 @default.
- W4224330071 hasConceptScore W4224330071C159985019 @default.
- W4224330071 hasConceptScore W4224330071C163716315 @default.
- W4224330071 hasConceptScore W4224330071C177264268 @default.