Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224439969> ?p ?o ?g. }
- W4224439969 endingPage "100360" @default.
- W4224439969 startingPage "100360" @default.
- W4224439969 abstract "Acoustic-resolution photoacoustic microscopy (AR-PAM) image resolution is determined by the point spread function (PSF) of the imaging system. Previous algorithms, including Richardson-Lucy (R-L) deconvolution and model-based (MB) deconvolution, improve spatial resolution by taking advantage of the PSF as prior knowledge. However, these methods encounter the problems of inaccurate deconvolution, meaning the deconvolved feature size and the original one are not consistent (e.g., the former can be smaller than the latter). We present a novel deep convolution neural network (CNN)-based algorithm featuring high-fidelity recovery of multiscale feature size to improve lateral resolution of AR-PAM. The CNN is trained with simulated image pairs of line patterns, which is to mimic blood vessels. To investigate the suitable CNN model structure and elaborate on the effectiveness of CNN methods compared with non-learning methods, we select five different CNN models, while R-L and directional MB methods are also applied for comparison. Besides simulated data, experimental data including tungsten wires, leaf veins, and in vivo blood vessels are also evaluated. A custom-defined metric of relative size error (RSE) is used to quantify the multiscale feature recovery ability of different methods. Compared to other methods, enhanced deep super resolution (EDSR) network and residual in residual dense block network (RRDBNet) model show better recovery in terms of RSE for tungsten wires with diameters ranging from 30 μm to 120 μm . Moreover, AR-PAM images of leaf veins are tested to demonstrate the effectiveness of the optimized CNN methods (by EDSR and RRDBNet) for complex patterns. Finally, in vivo images of mouse ear blood vessels and rat ear blood vessels are acquired and then deconvolved, and the results show that the proposed CNN method (notably RRDBNet) enables accurate deconvolution of multiscale feature size and thus good fidelity." @default.
- W4224439969 created "2022-04-27" @default.
- W4224439969 creator A5008342821 @default.
- W4224439969 creator A5028197963 @default.
- W4224439969 creator A5035548891 @default.
- W4224439969 creator A5075638298 @default.
- W4224439969 date "2022-06-01" @default.
- W4224439969 modified "2023-10-18" @default.
- W4224439969 title "High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks" @default.
- W4224439969 cites W1686788414 @default.
- W4224439969 cites W2019877871 @default.
- W4224439969 cites W2030964111 @default.
- W4224439969 cites W2037370232 @default.
- W4224439969 cites W2041107390 @default.
- W4224439969 cites W2068926508 @default.
- W4224439969 cites W2088909704 @default.
- W4224439969 cites W2089901886 @default.
- W4224439969 cites W2107538021 @default.
- W4224439969 cites W2153850426 @default.
- W4224439969 cites W2170608748 @default.
- W4224439969 cites W2314527276 @default.
- W4224439969 cites W2338716815 @default.
- W4224439969 cites W2578546217 @default.
- W4224439969 cites W2800371741 @default.
- W4224439969 cites W2866634454 @default.
- W4224439969 cites W2889217150 @default.
- W4224439969 cites W2889242407 @default.
- W4224439969 cites W2891158090 @default.
- W4224439969 cites W2919115771 @default.
- W4224439969 cites W2942273329 @default.
- W4224439969 cites W2945824449 @default.
- W4224439969 cites W2963372104 @default.
- W4224439969 cites W2974799347 @default.
- W4224439969 cites W2998249728 @default.
- W4224439969 cites W3012228525 @default.
- W4224439969 cites W3093434218 @default.
- W4224439969 cites W3093657850 @default.
- W4224439969 cites W3128409189 @default.
- W4224439969 cites W4220911433 @default.
- W4224439969 doi "https://doi.org/10.1016/j.pacs.2022.100360" @default.
- W4224439969 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35574187" @default.
- W4224439969 hasPublicationYear "2022" @default.
- W4224439969 type Work @default.
- W4224439969 citedByCount "2" @default.
- W4224439969 countsByYear W42244399692023 @default.
- W4224439969 crossrefType "journal-article" @default.
- W4224439969 hasAuthorship W4224439969A5008342821 @default.
- W4224439969 hasAuthorship W4224439969A5028197963 @default.
- W4224439969 hasAuthorship W4224439969A5035548891 @default.
- W4224439969 hasAuthorship W4224439969A5075638298 @default.
- W4224439969 hasBestOaLocation W42244399691 @default.
- W4224439969 hasConcept C11413529 @default.
- W4224439969 hasConcept C120665830 @default.
- W4224439969 hasConcept C121332964 @default.
- W4224439969 hasConcept C138885662 @default.
- W4224439969 hasConcept C141379421 @default.
- W4224439969 hasConcept C153180895 @default.
- W4224439969 hasConcept C154945302 @default.
- W4224439969 hasConcept C155512373 @default.
- W4224439969 hasConcept C174576160 @default.
- W4224439969 hasConcept C205372480 @default.
- W4224439969 hasConcept C2776401178 @default.
- W4224439969 hasConcept C31972630 @default.
- W4224439969 hasConcept C41008148 @default.
- W4224439969 hasConcept C41895202 @default.
- W4224439969 hasConcept C45347329 @default.
- W4224439969 hasConcept C50644808 @default.
- W4224439969 hasConcept C69179731 @default.
- W4224439969 hasConcept C81363708 @default.
- W4224439969 hasConceptScore W4224439969C11413529 @default.
- W4224439969 hasConceptScore W4224439969C120665830 @default.
- W4224439969 hasConceptScore W4224439969C121332964 @default.
- W4224439969 hasConceptScore W4224439969C138885662 @default.
- W4224439969 hasConceptScore W4224439969C141379421 @default.
- W4224439969 hasConceptScore W4224439969C153180895 @default.
- W4224439969 hasConceptScore W4224439969C154945302 @default.
- W4224439969 hasConceptScore W4224439969C155512373 @default.
- W4224439969 hasConceptScore W4224439969C174576160 @default.
- W4224439969 hasConceptScore W4224439969C205372480 @default.
- W4224439969 hasConceptScore W4224439969C2776401178 @default.
- W4224439969 hasConceptScore W4224439969C31972630 @default.
- W4224439969 hasConceptScore W4224439969C41008148 @default.
- W4224439969 hasConceptScore W4224439969C41895202 @default.
- W4224439969 hasConceptScore W4224439969C45347329 @default.
- W4224439969 hasConceptScore W4224439969C50644808 @default.
- W4224439969 hasConceptScore W4224439969C69179731 @default.
- W4224439969 hasConceptScore W4224439969C81363708 @default.
- W4224439969 hasLocation W42244399691 @default.
- W4224439969 hasLocation W42244399692 @default.
- W4224439969 hasLocation W42244399693 @default.
- W4224439969 hasOpenAccess W4224439969 @default.
- W4224439969 hasPrimaryLocation W42244399691 @default.
- W4224439969 hasRelatedWork W122547947 @default.
- W4224439969 hasRelatedWork W1529982406 @default.
- W4224439969 hasRelatedWork W1601492201 @default.
- W4224439969 hasRelatedWork W2014211806 @default.
- W4224439969 hasRelatedWork W2121917105 @default.
- W4224439969 hasRelatedWork W2295021132 @default.