Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224833274> ?p ?o ?g. }
- W4224833274 abstract "Population and industry are closely related to CO 2 emissions in Cities. However, few studies have explored the joint influence of population size and industrial structure on CO 2 emissions. This paper examined the nonlinear influence of population size and industrial structure on CO 2 emissions by using a threshold-STIRPAT model with the latest available data in 2001–2017 from 255 cities in China. Results indicated that the promotion effect of urban population size on CO 2 emissions increased in the first two stages and then decreased in the third stage when the industrial structure exceeded the threshold value of 1.22. Meanwhile, the industrial structure had a positive impact on CO 2 emissions if the urban population was less than 1.38 million. However, the previous promotional effect became an inhibitory effect when the urban population exceeded 1.38 million. According to the above findings, it is necessary to find a reasonable match between urban population size and industrial structure. Specifically, China should formulate differentiated urban population policies in cities with different industrial structures. In addition, for cities with a population size of more than 1.38 million, adjusting the industrial structure to give priority to the tertiary industry will be an effective way to reduce CO 2 emissions." @default.
- W4224833274 created "2022-04-27" @default.
- W4224833274 creator A5041456610 @default.
- W4224833274 creator A5057824984 @default.
- W4224833274 date "2022-04-25" @default.
- W4224833274 modified "2023-10-14" @default.
- W4224833274 title "Threshold Effects of Urban Population Size and Industrial Structure on CO2 Emissions in China" @default.
- W4224833274 cites W1153746237 @default.
- W4224833274 cites W1503653068 @default.
- W4224833274 cites W1980947885 @default.
- W4224833274 cites W2007471778 @default.
- W4224833274 cites W2031729134 @default.
- W4224833274 cites W2035015804 @default.
- W4224833274 cites W2045535285 @default.
- W4224833274 cites W2058391109 @default.
- W4224833274 cites W2081908573 @default.
- W4224833274 cites W2084745246 @default.
- W4224833274 cites W2096734231 @default.
- W4224833274 cites W2097467169 @default.
- W4224833274 cites W2116790356 @default.
- W4224833274 cites W2142893230 @default.
- W4224833274 cites W2143796175 @default.
- W4224833274 cites W2477858530 @default.
- W4224833274 cites W2519883577 @default.
- W4224833274 cites W2556868819 @default.
- W4224833274 cites W2564117561 @default.
- W4224833274 cites W2592403623 @default.
- W4224833274 cites W2595502736 @default.
- W4224833274 cites W2602456883 @default.
- W4224833274 cites W2626972740 @default.
- W4224833274 cites W2746678819 @default.
- W4224833274 cites W2763105969 @default.
- W4224833274 cites W2782451748 @default.
- W4224833274 cites W2801550310 @default.
- W4224833274 cites W2804964779 @default.
- W4224833274 cites W2810999103 @default.
- W4224833274 cites W2884035018 @default.
- W4224833274 cites W2897770548 @default.
- W4224833274 cites W2902168855 @default.
- W4224833274 cites W2921396205 @default.
- W4224833274 cites W2938782725 @default.
- W4224833274 cites W2944243060 @default.
- W4224833274 cites W2969983059 @default.
- W4224833274 cites W2971111956 @default.
- W4224833274 cites W2980466385 @default.
- W4224833274 cites W2998400100 @default.
- W4224833274 cites W3012190759 @default.
- W4224833274 cites W3023637754 @default.
- W4224833274 cites W3083760974 @default.
- W4224833274 cites W3084396399 @default.
- W4224833274 cites W3100991075 @default.
- W4224833274 cites W3114772364 @default.
- W4224833274 cites W3119438337 @default.
- W4224833274 cites W3120668471 @default.
- W4224833274 cites W3123103453 @default.
- W4224833274 cites W3126900015 @default.
- W4224833274 cites W3173861037 @default.
- W4224833274 cites W4200564440 @default.
- W4224833274 cites W4205330209 @default.
- W4224833274 cites W4206196604 @default.
- W4224833274 cites W4232470758 @default.
- W4224833274 doi "https://doi.org/10.3389/fenvs.2022.894442" @default.
- W4224833274 hasPublicationYear "2022" @default.
- W4224833274 type Work @default.
- W4224833274 citedByCount "3" @default.
- W4224833274 countsByYear W42248332742022 @default.
- W4224833274 countsByYear W42248332742023 @default.
- W4224833274 crossrefType "journal-article" @default.
- W4224833274 hasAuthorship W4224833274A5041456610 @default.
- W4224833274 hasAuthorship W4224833274A5057824984 @default.
- W4224833274 hasBestOaLocation W42248332741 @default.
- W4224833274 hasConcept C144024400 @default.
- W4224833274 hasConcept C144133560 @default.
- W4224833274 hasConcept C149923435 @default.
- W4224833274 hasConcept C162324750 @default.
- W4224833274 hasConcept C166957645 @default.
- W4224833274 hasConcept C169733012 @default.
- W4224833274 hasConcept C17744445 @default.
- W4224833274 hasConcept C191935318 @default.
- W4224833274 hasConcept C199539241 @default.
- W4224833274 hasConcept C205649164 @default.
- W4224833274 hasConcept C26271046 @default.
- W4224833274 hasConcept C2908647359 @default.
- W4224833274 hasConcept C2983611323 @default.
- W4224833274 hasConcept C39432304 @default.
- W4224833274 hasConcept C39853841 @default.
- W4224833274 hasConcept C48824518 @default.
- W4224833274 hasConcept C50522688 @default.
- W4224833274 hasConcept C87717796 @default.
- W4224833274 hasConcept C94625758 @default.
- W4224833274 hasConcept C98147612 @default.
- W4224833274 hasConceptScore W4224833274C144024400 @default.
- W4224833274 hasConceptScore W4224833274C144133560 @default.
- W4224833274 hasConceptScore W4224833274C149923435 @default.
- W4224833274 hasConceptScore W4224833274C162324750 @default.
- W4224833274 hasConceptScore W4224833274C166957645 @default.
- W4224833274 hasConceptScore W4224833274C169733012 @default.
- W4224833274 hasConceptScore W4224833274C17744445 @default.
- W4224833274 hasConceptScore W4224833274C191935318 @default.
- W4224833274 hasConceptScore W4224833274C199539241 @default.