Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224862963> ?p ?o ?g. }
- W4224862963 abstract "Ti–6Al–4V ELI alloy is one of the most familiar materials for orthopedic implants, aeronautical parts, marine components, oil and gas production equipment, and cryogenic vessel applications. Therefore, its appropriate quality of finishing is highly essential for these applications. But the characteristics like lower modulus of elasticity, lesser thermal conductivity, and high chemical sensitivity placed it in the categories of difficult-to-cut metal alloys. Also, tooling cost is one of the prime issues in the machining of this alloy. Therefore, this research is more inclined to use a low-budget uncoated carbide tool in turning the Ti–6Al–4V ELI alloy. Also, the selection of suitable levels of machining parameters is highly indispensable to get the appropriate surface finish with a low tooling cost. So, the [Formula: see text] experimental design is utilized to check the performances of the uncoated carbide tool in the turning tests. The performance indexes like surface roughness (Ra), flank wear of tool (VBc), and material removal rate (MRR) are measured and studied with the help of surface plots and interaction plots. Further, the Firefly Algorithm optimization is employed to find the optimal cutting parameters and cutting response values. The local optimal values of the input parameters a, f, and V c are estimated as 0.3241[Formula: see text]mm, 0.0893[Formula: see text]mm/rev, and 82.41[Formula: see text]m/min, respectively. Similarly, the global optimal values for the responses Ra, VBc, and MRR are reported as 0.6321[Formula: see text]μm, 0.09253[Formula: see text]mm, and 24.61[Formula: see text]g/min, individually. Additionally, to predict the responses, Generalized Regression Neural Network (GRNN) modeling is employed and the average absolute error for each response is noticed to be less than 1%. Therefore, the GRNN modeling tool is strongly recommended for various machining applications." @default.
- W4224862963 created "2022-04-27" @default.
- W4224862963 creator A5027660877 @default.
- W4224862963 creator A5032073606 @default.
- W4224862963 creator A5041265562 @default.
- W4224862963 creator A5048523738 @default.
- W4224862963 date "2022-04-25" @default.
- W4224862963 modified "2023-10-01" @default.
- W4224862963 title "INVESTIGATION OF MACHINABILITY PERFORMANCE IN TURNING OF Ti–6Al–4V ELI ALLOY USING FIREFLY ALGORITHM AND GRNN APPROACHES" @default.
- W4224862963 cites W1523741643 @default.
- W4224862963 cites W1868528558 @default.
- W4224862963 cites W1975605008 @default.
- W4224862963 cites W1979879485 @default.
- W4224862963 cites W1982853572 @default.
- W4224862963 cites W2023490812 @default.
- W4224862963 cites W2029846254 @default.
- W4224862963 cites W2038434203 @default.
- W4224862963 cites W2045472607 @default.
- W4224862963 cites W2046510522 @default.
- W4224862963 cites W2058665445 @default.
- W4224862963 cites W2067010659 @default.
- W4224862963 cites W2149723649 @default.
- W4224862963 cites W2196085666 @default.
- W4224862963 cites W2265331118 @default.
- W4224862963 cites W2339550244 @default.
- W4224862963 cites W2567500619 @default.
- W4224862963 cites W2604447120 @default.
- W4224862963 cites W2621173548 @default.
- W4224862963 cites W2767106719 @default.
- W4224862963 cites W2789979174 @default.
- W4224862963 cites W2792771199 @default.
- W4224862963 cites W2886208232 @default.
- W4224862963 cites W2886583409 @default.
- W4224862963 cites W2887863616 @default.
- W4224862963 cites W2891107992 @default.
- W4224862963 cites W2891545870 @default.
- W4224862963 cites W2896146742 @default.
- W4224862963 cites W2913909182 @default.
- W4224862963 cites W2918458428 @default.
- W4224862963 cites W2953573852 @default.
- W4224862963 cites W2972372801 @default.
- W4224862963 cites W2980259936 @default.
- W4224862963 cites W2985819655 @default.
- W4224862963 cites W3013844057 @default.
- W4224862963 cites W3021571665 @default.
- W4224862963 cites W3022463787 @default.
- W4224862963 cites W3037144303 @default.
- W4224862963 cites W3085168455 @default.
- W4224862963 cites W3125499476 @default.
- W4224862963 cites W3143090756 @default.
- W4224862963 cites W3186185742 @default.
- W4224862963 cites W3197729645 @default.
- W4224862963 cites W4230096344 @default.
- W4224862963 cites W878693017 @default.
- W4224862963 cites W2052544980 @default.
- W4224862963 doi "https://doi.org/10.1142/s0218625x22500755" @default.
- W4224862963 hasPublicationYear "2022" @default.
- W4224862963 type Work @default.
- W4224862963 citedByCount "4" @default.
- W4224862963 countsByYear W42248629632022 @default.
- W4224862963 countsByYear W42248629632023 @default.
- W4224862963 crossrefType "journal-article" @default.
- W4224862963 hasAuthorship W4224862963A5027660877 @default.
- W4224862963 hasAuthorship W4224862963A5032073606 @default.
- W4224862963 hasAuthorship W4224862963A5041265562 @default.
- W4224862963 hasAuthorship W4224862963A5048523738 @default.
- W4224862963 hasConcept C107365816 @default.
- W4224862963 hasConcept C126255220 @default.
- W4224862963 hasConcept C127413603 @default.
- W4224862963 hasConcept C134132462 @default.
- W4224862963 hasConcept C134646822 @default.
- W4224862963 hasConcept C147764199 @default.
- W4224862963 hasConcept C159985019 @default.
- W4224862963 hasConcept C191897082 @default.
- W4224862963 hasConcept C192562407 @default.
- W4224862963 hasConcept C2775926494 @default.
- W4224862963 hasConcept C2780026712 @default.
- W4224862963 hasConcept C33923547 @default.
- W4224862963 hasConcept C41008148 @default.
- W4224862963 hasConcept C523214423 @default.
- W4224862963 hasConcept C5335593 @default.
- W4224862963 hasConcept C71039073 @default.
- W4224862963 hasConcept C78519656 @default.
- W4224862963 hasConcept C8953137 @default.
- W4224862963 hasConceptScore W4224862963C107365816 @default.
- W4224862963 hasConceptScore W4224862963C126255220 @default.
- W4224862963 hasConceptScore W4224862963C127413603 @default.
- W4224862963 hasConceptScore W4224862963C134132462 @default.
- W4224862963 hasConceptScore W4224862963C134646822 @default.
- W4224862963 hasConceptScore W4224862963C147764199 @default.
- W4224862963 hasConceptScore W4224862963C159985019 @default.
- W4224862963 hasConceptScore W4224862963C191897082 @default.
- W4224862963 hasConceptScore W4224862963C192562407 @default.
- W4224862963 hasConceptScore W4224862963C2775926494 @default.
- W4224862963 hasConceptScore W4224862963C2780026712 @default.
- W4224862963 hasConceptScore W4224862963C33923547 @default.
- W4224862963 hasConceptScore W4224862963C41008148 @default.
- W4224862963 hasConceptScore W4224862963C523214423 @default.
- W4224862963 hasConceptScore W4224862963C5335593 @default.
- W4224862963 hasConceptScore W4224862963C71039073 @default.