Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224863246> ?p ?o ?g. }
- W4224863246 endingPage "53" @default.
- W4224863246 startingPage "1" @default.
- W4224863246 abstract "Monte Carlo-generalized Polynomial Chaos (MC-gPC) has already been thoroughly studied in the literature. MC-gPC both builds a gPC based reduced model of a partial differential equation (PDE) of interest and solves it with an intrusive MC scheme in order to propagate uncertainties. This reduced model captures the behavior of the solution of a set of PDEs subject to some uncertain parameters modeled by random variables. MC-gPC is an intrusive method, it needs modifications of a code in order to be applied. This may be considered a drawback. But, on another hand, important computational gains obtained with MC-gPC have been observed on many applications. The MC-gPC resolution of Boltzmann equation has been investigated in many different ways: the wellposedness of the gPC based reduced model has been proved, the convergence with respect to the truncation order P has been theoretically and numerically studied and the coupling to nonlinear physics has been performed. But the study of the MC noise remains, to our knowledge, to be done. This is the purpose of this paper. We are interested in understanding what can be expected in terms of error estimations with respect to NMC, the number of MC particles. For this, we estimate the variances of non-intrusive gPC and MC-gPC, theoretically and numerically, and compare them in several configurations for several MC schemes (the semi-analog and the non-analog ones). The results show that the MC schemes of the literature used to solve MC-gPC present an excess of variance with respect to the non-intrusive strategies for comparable particle numbers NMC (even if this excess of variance remains acceptable and competitive in many situations)." @default.
- W4224863246 created "2022-04-27" @default.
- W4224863246 creator A5034346612 @default.
- W4224863246 date "2022-04-16" @default.
- W4224863246 modified "2023-09-25" @default.
- W4224863246 title "Numerical Analysis of the Monte-Carlo Noise for the Resolution of the Deterministic and Uncertain Linear Boltzmann Equation (Comparison of Non-Intrusive gPC and MC-gPC)" @default.
- W4224863246 cites W1911106672 @default.
- W4224863246 cites W1998233602 @default.
- W4224863246 cites W2005044680 @default.
- W4224863246 cites W2016423519 @default.
- W4224863246 cites W2036843121 @default.
- W4224863246 cites W2062993069 @default.
- W4224863246 cites W2064340614 @default.
- W4224863246 cites W2067478553 @default.
- W4224863246 cites W2068363969 @default.
- W4224863246 cites W2075829364 @default.
- W4224863246 cites W2092047866 @default.
- W4224863246 cites W2102129176 @default.
- W4224863246 cites W2113127808 @default.
- W4224863246 cites W2128378041 @default.
- W4224863246 cites W2150062983 @default.
- W4224863246 cites W2321957512 @default.
- W4224863246 cites W2332771484 @default.
- W4224863246 cites W2413738945 @default.
- W4224863246 cites W2470586102 @default.
- W4224863246 cites W2596964193 @default.
- W4224863246 cites W2916752512 @default.
- W4224863246 cites W2986744497 @default.
- W4224863246 cites W3011092311 @default.
- W4224863246 cites W3015855669 @default.
- W4224863246 cites W3016113967 @default.
- W4224863246 cites W3027452041 @default.
- W4224863246 cites W3211906895 @default.
- W4224863246 cites W3212351402 @default.
- W4224863246 cites W4206834560 @default.
- W4224863246 cites W4240188358 @default.
- W4224863246 cites W4382237803 @default.
- W4224863246 cites W3015064718 @default.
- W4224863246 doi "https://doi.org/10.1080/23324309.2022.2063900" @default.
- W4224863246 hasPublicationYear "2022" @default.
- W4224863246 type Work @default.
- W4224863246 citedByCount "1" @default.
- W4224863246 countsByYear W42248632462023 @default.
- W4224863246 crossrefType "journal-article" @default.
- W4224863246 hasAuthorship W4224863246A5034346612 @default.
- W4224863246 hasBestOaLocation W42248632462 @default.
- W4224863246 hasConcept C105795698 @default.
- W4224863246 hasConcept C106195933 @default.
- W4224863246 hasConcept C11413529 @default.
- W4224863246 hasConcept C115961682 @default.
- W4224863246 hasConcept C121332964 @default.
- W4224863246 hasConcept C121864883 @default.
- W4224863246 hasConcept C121955636 @default.
- W4224863246 hasConcept C134306372 @default.
- W4224863246 hasConcept C144133560 @default.
- W4224863246 hasConcept C154945302 @default.
- W4224863246 hasConcept C158622935 @default.
- W4224863246 hasConcept C162324750 @default.
- W4224863246 hasConcept C165995430 @default.
- W4224863246 hasConcept C19499675 @default.
- W4224863246 hasConcept C196083921 @default.
- W4224863246 hasConcept C2777303404 @default.
- W4224863246 hasConcept C28826006 @default.
- W4224863246 hasConcept C33923547 @default.
- W4224863246 hasConcept C35304006 @default.
- W4224863246 hasConcept C41008148 @default.
- W4224863246 hasConcept C50522688 @default.
- W4224863246 hasConcept C62520636 @default.
- W4224863246 hasConcept C93779851 @default.
- W4224863246 hasConcept C99498987 @default.
- W4224863246 hasConceptScore W4224863246C105795698 @default.
- W4224863246 hasConceptScore W4224863246C106195933 @default.
- W4224863246 hasConceptScore W4224863246C11413529 @default.
- W4224863246 hasConceptScore W4224863246C115961682 @default.
- W4224863246 hasConceptScore W4224863246C121332964 @default.
- W4224863246 hasConceptScore W4224863246C121864883 @default.
- W4224863246 hasConceptScore W4224863246C121955636 @default.
- W4224863246 hasConceptScore W4224863246C134306372 @default.
- W4224863246 hasConceptScore W4224863246C144133560 @default.
- W4224863246 hasConceptScore W4224863246C154945302 @default.
- W4224863246 hasConceptScore W4224863246C158622935 @default.
- W4224863246 hasConceptScore W4224863246C162324750 @default.
- W4224863246 hasConceptScore W4224863246C165995430 @default.
- W4224863246 hasConceptScore W4224863246C19499675 @default.
- W4224863246 hasConceptScore W4224863246C196083921 @default.
- W4224863246 hasConceptScore W4224863246C2777303404 @default.
- W4224863246 hasConceptScore W4224863246C28826006 @default.
- W4224863246 hasConceptScore W4224863246C33923547 @default.
- W4224863246 hasConceptScore W4224863246C35304006 @default.
- W4224863246 hasConceptScore W4224863246C41008148 @default.
- W4224863246 hasConceptScore W4224863246C50522688 @default.
- W4224863246 hasConceptScore W4224863246C62520636 @default.
- W4224863246 hasConceptScore W4224863246C93779851 @default.
- W4224863246 hasConceptScore W4224863246C99498987 @default.
- W4224863246 hasIssue "1-3" @default.
- W4224863246 hasLocation W42248632461 @default.
- W4224863246 hasLocation W42248632462 @default.
- W4224863246 hasLocation W42248632463 @default.