Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224864419> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4224864419 abstract "Automatic laparoscope motion control is fundamentally important for surgeons to efficiently perform operations. However, its traditional control methods based on tool tracking without considering information hidden in surgical scenes are not intelligent enough, while the latest supervised imitation learning (IL)-based methods require expensive sensor data and suffer from distribution mismatch issues caused by limited demonstrations. In this paper, we propose a novel Imitation Learning framework for Laparoscope Control (ILLC) with reinforcement learning (RL), which can efficiently learn the control policy from limited surgical video clips. Specially, we first extract surgical laparoscope trajectories from unlabeled videos as the demonstrations and reconstruct the corresponding surgical scenes. To fully learn from limited motion trajectory demonstrations, we propose Shape Preserving Trajectory Augmentation (SPTA) to augment these data, and build a simulation environment that supports parallel RGB-D rendering to reinforce the RL policy for interacting with the environment efficiently. With adversarial training for IL, we obtain the laparoscope control policy based on the generated rollouts and surgical demonstrations. Extensive experiments are conducted in unseen reconstructed surgical scenes, and our method outperforms the previous IL methods, which proves the feasibility of our unified learning-based framework for laparoscope control." @default.
- W4224864419 created "2022-04-27" @default.
- W4224864419 creator A5021328527 @default.
- W4224864419 creator A5029695887 @default.
- W4224864419 creator A5032708386 @default.
- W4224864419 creator A5046214073 @default.
- W4224864419 creator A5052783753 @default.
- W4224864419 creator A5080622031 @default.
- W4224864419 creator A5085059175 @default.
- W4224864419 creator A5085410574 @default.
- W4224864419 creator A5090516040 @default.
- W4224864419 date "2022-05-23" @default.
- W4224864419 modified "2023-10-14" @default.
- W4224864419 title "3D Perception based Imitation Learning under Limited Demonstration for Laparoscope Control in Robotic Surgery" @default.
- W4224864419 cites W1608646964 @default.
- W4224864419 cites W2001104271 @default.
- W4224864419 cites W2026573005 @default.
- W4224864419 cites W2153039749 @default.
- W4224864419 cites W2167667767 @default.
- W4224864419 cites W2559767995 @default.
- W4224864419 cites W2736966600 @default.
- W4224864419 cites W2770184295 @default.
- W4224864419 cites W2914772737 @default.
- W4224864419 cites W2950496566 @default.
- W4224864419 cites W2967666060 @default.
- W4224864419 cites W2982651265 @default.
- W4224864419 cites W2991391304 @default.
- W4224864419 cites W3034269714 @default.
- W4224864419 cites W3048609641 @default.
- W4224864419 cites W3090835024 @default.
- W4224864419 cites W3196757288 @default.
- W4224864419 cites W3206711961 @default.
- W4224864419 doi "https://doi.org/10.1109/icra46639.2022.9812010" @default.
- W4224864419 hasPublicationYear "2022" @default.
- W4224864419 type Work @default.
- W4224864419 citedByCount "3" @default.
- W4224864419 countsByYear W42248644192023 @default.
- W4224864419 crossrefType "proceedings-article" @default.
- W4224864419 hasAuthorship W4224864419A5021328527 @default.
- W4224864419 hasAuthorship W4224864419A5029695887 @default.
- W4224864419 hasAuthorship W4224864419A5032708386 @default.
- W4224864419 hasAuthorship W4224864419A5046214073 @default.
- W4224864419 hasAuthorship W4224864419A5052783753 @default.
- W4224864419 hasAuthorship W4224864419A5080622031 @default.
- W4224864419 hasAuthorship W4224864419A5085059175 @default.
- W4224864419 hasAuthorship W4224864419A5085410574 @default.
- W4224864419 hasAuthorship W4224864419A5090516040 @default.
- W4224864419 hasBestOaLocation W42248644192 @default.
- W4224864419 hasConcept C121332964 @default.
- W4224864419 hasConcept C1276947 @default.
- W4224864419 hasConcept C13662910 @default.
- W4224864419 hasConcept C154945302 @default.
- W4224864419 hasConcept C205711294 @default.
- W4224864419 hasConcept C2775924081 @default.
- W4224864419 hasConcept C31972630 @default.
- W4224864419 hasConcept C41008148 @default.
- W4224864419 hasConcept C90509273 @default.
- W4224864419 hasConcept C97541855 @default.
- W4224864419 hasConceptScore W4224864419C121332964 @default.
- W4224864419 hasConceptScore W4224864419C1276947 @default.
- W4224864419 hasConceptScore W4224864419C13662910 @default.
- W4224864419 hasConceptScore W4224864419C154945302 @default.
- W4224864419 hasConceptScore W4224864419C205711294 @default.
- W4224864419 hasConceptScore W4224864419C2775924081 @default.
- W4224864419 hasConceptScore W4224864419C31972630 @default.
- W4224864419 hasConceptScore W4224864419C41008148 @default.
- W4224864419 hasConceptScore W4224864419C90509273 @default.
- W4224864419 hasConceptScore W4224864419C97541855 @default.
- W4224864419 hasLocation W42248644191 @default.
- W4224864419 hasLocation W42248644192 @default.
- W4224864419 hasOpenAccess W4224864419 @default.
- W4224864419 hasPrimaryLocation W42248644191 @default.
- W4224864419 hasRelatedWork W1503414886 @default.
- W4224864419 hasRelatedWork W1863533157 @default.
- W4224864419 hasRelatedWork W2000407620 @default.
- W4224864419 hasRelatedWork W2048402902 @default.
- W4224864419 hasRelatedWork W2095660797 @default.
- W4224864419 hasRelatedWork W2112614329 @default.
- W4224864419 hasRelatedWork W2740010476 @default.
- W4224864419 hasRelatedWork W2797881514 @default.
- W4224864419 hasRelatedWork W3074294383 @default.
- W4224864419 hasRelatedWork W3182299699 @default.
- W4224864419 isParatext "false" @default.
- W4224864419 isRetracted "false" @default.
- W4224864419 workType "article" @default.