Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224879057> ?p ?o ?g. }
- W4224879057 endingPage "694" @default.
- W4224879057 startingPage "679" @default.
- W4224879057 abstract "The Internet is a vital part of today’s ecosystem. The speedy evolution of the Internet has brought up practical issues such as the problem of information retrieval. Several methods have been proposed to solve this issue. Such approaches retrieve the information by using SPARQL queries over the Resource Description Framework (RDF) content which requires a precise match concerning the query structure and the RDF content. In this work, we propose a transfer learning-based neural learning method that helps to search RDF graphs to provide probabilistic reasoning between the queries and their results. The problem is formulated as a classification task where RDF graphs are preprocessed to abstract the N-Triples, then encode the abstracted N-triples into a transitional state that is suitable for neural transfer learning. Next, we fine-tune the neural learner to learn the semantic relationships between the N-triples. To validate the proposed approach, we employ ten-fold cross-validation. The results have shown that the anticipated approach is accurate by acquiring the average accuracy, recall, precision, and f-measure. The achieved scores are 97.52%, 96.31%, 98.45%, and 97.37%, respectively, and outperforms the baseline approaches." @default.
- W4224879057 created "2022-04-27" @default.
- W4224879057 creator A5023034996 @default.
- W4224879057 creator A5037432123 @default.
- W4224879057 creator A5079604389 @default.
- W4224879057 date "2022-04-18" @default.
- W4224879057 modified "2023-09-24" @default.
- W4224879057 title "Learning to transfer knowledge from RDF Graphs with gated recurrent units" @default.
- W4224879057 cites W1558417170 @default.
- W4224879057 cites W1792735297 @default.
- W4224879057 cites W1797761079 @default.
- W4224879057 cites W1916279783 @default.
- W4224879057 cites W1997065369 @default.
- W4224879057 cites W1998916198 @default.
- W4224879057 cites W2009382827 @default.
- W4224879057 cites W2032348489 @default.
- W4224879057 cites W2051729102 @default.
- W4224879057 cites W2063555740 @default.
- W4224879057 cites W2072534270 @default.
- W4224879057 cites W2080358247 @default.
- W4224879057 cites W2080761477 @default.
- W4224879057 cites W2083619093 @default.
- W4224879057 cites W2091757375 @default.
- W4224879057 cites W2097199464 @default.
- W4224879057 cites W2102193394 @default.
- W4224879057 cites W2104495568 @default.
- W4224879057 cites W2116391761 @default.
- W4224879057 cites W2132037635 @default.
- W4224879057 cites W2142827986 @default.
- W4224879057 cites W2149656257 @default.
- W4224879057 cites W2153178188 @default.
- W4224879057 cites W2157147444 @default.
- W4224879057 cites W2162777223 @default.
- W4224879057 cites W223690384 @default.
- W4224879057 cites W2253429366 @default.
- W4224879057 cites W2464920871 @default.
- W4224879057 cites W2477537772 @default.
- W4224879057 cites W2482023025 @default.
- W4224879057 cites W2574867284 @default.
- W4224879057 cites W2588000623 @default.
- W4224879057 cites W2617659182 @default.
- W4224879057 cites W2751039401 @default.
- W4224879057 cites W2793917553 @default.
- W4224879057 cites W2794857048 @default.
- W4224879057 cites W2809895060 @default.
- W4224879057 cites W2884001105 @default.
- W4224879057 cites W2918628708 @default.
- W4224879057 cites W2928842276 @default.
- W4224879057 cites W2941547983 @default.
- W4224879057 cites W2945672805 @default.
- W4224879057 cites W2982471560 @default.
- W4224879057 cites W2991703095 @default.
- W4224879057 cites W3012774627 @default.
- W4224879057 cites W3018933895 @default.
- W4224879057 cites W3100302719 @default.
- W4224879057 cites W3102782538 @default.
- W4224879057 cites W422766820 @default.
- W4224879057 cites W654603866 @default.
- W4224879057 cites W811675622 @default.
- W4224879057 doi "https://doi.org/10.3233/ida-215919" @default.
- W4224879057 hasPublicationYear "2022" @default.
- W4224879057 type Work @default.
- W4224879057 citedByCount "0" @default.
- W4224879057 crossrefType "journal-article" @default.
- W4224879057 hasAuthorship W4224879057A5023034996 @default.
- W4224879057 hasAuthorship W4224879057A5037432123 @default.
- W4224879057 hasAuthorship W4224879057A5079604389 @default.
- W4224879057 hasConcept C104317684 @default.
- W4224879057 hasConcept C119857082 @default.
- W4224879057 hasConcept C147497476 @default.
- W4224879057 hasConcept C150899416 @default.
- W4224879057 hasConcept C154945302 @default.
- W4224879057 hasConcept C157595922 @default.
- W4224879057 hasConcept C162324750 @default.
- W4224879057 hasConcept C185592680 @default.
- W4224879057 hasConcept C187736073 @default.
- W4224879057 hasConcept C2129575 @default.
- W4224879057 hasConcept C23123220 @default.
- W4224879057 hasConcept C2780451532 @default.
- W4224879057 hasConcept C41008148 @default.
- W4224879057 hasConcept C41009113 @default.
- W4224879057 hasConcept C49937458 @default.
- W4224879057 hasConcept C55493867 @default.
- W4224879057 hasConcept C66746571 @default.
- W4224879057 hasConceptScore W4224879057C104317684 @default.
- W4224879057 hasConceptScore W4224879057C119857082 @default.
- W4224879057 hasConceptScore W4224879057C147497476 @default.
- W4224879057 hasConceptScore W4224879057C150899416 @default.
- W4224879057 hasConceptScore W4224879057C154945302 @default.
- W4224879057 hasConceptScore W4224879057C157595922 @default.
- W4224879057 hasConceptScore W4224879057C162324750 @default.
- W4224879057 hasConceptScore W4224879057C185592680 @default.
- W4224879057 hasConceptScore W4224879057C187736073 @default.
- W4224879057 hasConceptScore W4224879057C2129575 @default.
- W4224879057 hasConceptScore W4224879057C23123220 @default.
- W4224879057 hasConceptScore W4224879057C2780451532 @default.
- W4224879057 hasConceptScore W4224879057C41008148 @default.
- W4224879057 hasConceptScore W4224879057C41009113 @default.