Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224881421> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4224881421 endingPage "105366" @default.
- W4224881421 startingPage "105366" @default.
- W4224881421 abstract "Evapotranspiration (ET) measures the amount of water lost from the Earth's surface to the atmosphere and is an integral metric for both agricultural and environmental sciences. Understanding and quantifying ET is critical for achieving effective management of freshwater and irrigation systems. However, current ET estimation models suffer from a trade-off between accuracy and spatial coverage. In this study, we introduce our model Quench, a neural network architecture that achieves highly-accurate ET estimates over large continuous spatial extents. Quench uses our novel Attention-Based Convolutional Capsule for its neural network layers to identify areas of focus and efficiently extract ET information from satellite imagery. Benchmarks that profile our model's performance show substantive improvements in accuracy, with up to 128% increase in accuracy compared to traditional convolutional-based and process-based models. Quench also demonstrates consistent model performance over high geospatial variability and a diverse array of regions, seasons, climates, and vegetations." @default.
- W4224881421 created "2022-04-27" @default.
- W4224881421 creator A5001547699 @default.
- W4224881421 creator A5002235296 @default.
- W4224881421 creator A5015275087 @default.
- W4224881421 creator A5027872824 @default.
- W4224881421 creator A5058129358 @default.
- W4224881421 creator A5062597846 @default.
- W4224881421 creator A5071053486 @default.
- W4224881421 creator A5072618060 @default.
- W4224881421 date "2022-06-01" @default.
- W4224881421 modified "2023-10-13" @default.
- W4224881421 title "Attention-based convolutional capsules for evapotranspiration estimation at scale" @default.
- W4224881421 cites W2007381817 @default.
- W4224881421 cites W2022054570 @default.
- W4224881421 cites W2028191110 @default.
- W4224881421 cites W2122853172 @default.
- W4224881421 cites W2802557308 @default.
- W4224881421 cites W2969216790 @default.
- W4224881421 cites W3082059999 @default.
- W4224881421 cites W3155235694 @default.
- W4224881421 cites W4241573875 @default.
- W4224881421 doi "https://doi.org/10.1016/j.envsoft.2022.105366" @default.
- W4224881421 hasPublicationYear "2022" @default.
- W4224881421 type Work @default.
- W4224881421 citedByCount "2" @default.
- W4224881421 countsByYear W42248814212023 @default.
- W4224881421 crossrefType "journal-article" @default.
- W4224881421 hasAuthorship W4224881421A5001547699 @default.
- W4224881421 hasAuthorship W4224881421A5002235296 @default.
- W4224881421 hasAuthorship W4224881421A5015275087 @default.
- W4224881421 hasAuthorship W4224881421A5027872824 @default.
- W4224881421 hasAuthorship W4224881421A5058129358 @default.
- W4224881421 hasAuthorship W4224881421A5062597846 @default.
- W4224881421 hasAuthorship W4224881421A5071053486 @default.
- W4224881421 hasAuthorship W4224881421A5072618060 @default.
- W4224881421 hasBestOaLocation W42248814211 @default.
- W4224881421 hasConcept C111919701 @default.
- W4224881421 hasConcept C119857082 @default.
- W4224881421 hasConcept C124101348 @default.
- W4224881421 hasConcept C127413603 @default.
- W4224881421 hasConcept C176217482 @default.
- W4224881421 hasConcept C176783924 @default.
- W4224881421 hasConcept C18903297 @default.
- W4224881421 hasConcept C205649164 @default.
- W4224881421 hasConcept C21547014 @default.
- W4224881421 hasConcept C2778755073 @default.
- W4224881421 hasConcept C39432304 @default.
- W4224881421 hasConcept C41008148 @default.
- W4224881421 hasConcept C58640448 @default.
- W4224881421 hasConcept C62649853 @default.
- W4224881421 hasConcept C81363708 @default.
- W4224881421 hasConcept C86803240 @default.
- W4224881421 hasConcept C9770341 @default.
- W4224881421 hasConcept C98045186 @default.
- W4224881421 hasConceptScore W4224881421C111919701 @default.
- W4224881421 hasConceptScore W4224881421C119857082 @default.
- W4224881421 hasConceptScore W4224881421C124101348 @default.
- W4224881421 hasConceptScore W4224881421C127413603 @default.
- W4224881421 hasConceptScore W4224881421C176217482 @default.
- W4224881421 hasConceptScore W4224881421C176783924 @default.
- W4224881421 hasConceptScore W4224881421C18903297 @default.
- W4224881421 hasConceptScore W4224881421C205649164 @default.
- W4224881421 hasConceptScore W4224881421C21547014 @default.
- W4224881421 hasConceptScore W4224881421C2778755073 @default.
- W4224881421 hasConceptScore W4224881421C39432304 @default.
- W4224881421 hasConceptScore W4224881421C41008148 @default.
- W4224881421 hasConceptScore W4224881421C58640448 @default.
- W4224881421 hasConceptScore W4224881421C62649853 @default.
- W4224881421 hasConceptScore W4224881421C81363708 @default.
- W4224881421 hasConceptScore W4224881421C86803240 @default.
- W4224881421 hasConceptScore W4224881421C9770341 @default.
- W4224881421 hasConceptScore W4224881421C98045186 @default.
- W4224881421 hasFunder F4320306076 @default.
- W4224881421 hasFunder F4320306084 @default.
- W4224881421 hasFunder F4320332299 @default.
- W4224881421 hasLocation W42248814211 @default.
- W4224881421 hasLocation W42248814212 @default.
- W4224881421 hasOpenAccess W4224881421 @default.
- W4224881421 hasPrimaryLocation W42248814211 @default.
- W4224881421 hasRelatedWork W2018625055 @default.
- W4224881421 hasRelatedWork W2035697161 @default.
- W4224881421 hasRelatedWork W2055135361 @default.
- W4224881421 hasRelatedWork W2381363492 @default.
- W4224881421 hasRelatedWork W2521062615 @default.
- W4224881421 hasRelatedWork W2899084033 @default.
- W4224881421 hasRelatedWork W2901357362 @default.
- W4224881421 hasRelatedWork W3016958897 @default.
- W4224881421 hasRelatedWork W3181746755 @default.
- W4224881421 hasRelatedWork W4283379348 @default.
- W4224881421 hasVolume "152" @default.
- W4224881421 isParatext "false" @default.
- W4224881421 isRetracted "false" @default.
- W4224881421 workType "article" @default.