Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224883184> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4224883184 abstract "Recently there is an emergent curiosity among researchers to apply machine learning algorithms over diversified real world complications to get simpler outcome. The notion behind this briefing is to represent the basic machine learning algorithms and its applicability in current research. Broadly machine learning algorithms falls to the category of either supervised or unsupervised learning technique. In this paper we have discussed supervised machine learning techniques with its simplicity to apply over various problem areas and simultaneously the challenges for such algorithms. Furthermore SVM and Random Forest (RF) are utilised learn, categorise, and compare cancer, liver, diabetes, iris, and heart data in this study. For all considered data sets, the results of SVM and RF are compared. The results are properly analysed in order to develop better prediction learning techniques." @default.
- W4224883184 created "2022-04-27" @default.
- W4224883184 creator A5030395865 @default.
- W4224883184 creator A5043846025 @default.
- W4224883184 creator A5057783796 @default.
- W4224883184 creator A5058482802 @default.
- W4224883184 creator A5065829352 @default.
- W4224883184 date "2022-02-12" @default.
- W4224883184 modified "2023-10-04" @default.
- W4224883184 title "Supervised Machine Learning Approaches for Medical Data Classification" @default.
- W4224883184 cites W2619676011 @default.
- W4224883184 cites W2889320515 @default.
- W4224883184 cites W2938285755 @default.
- W4224883184 cites W2955867965 @default.
- W4224883184 cites W2963139509 @default.
- W4224883184 cites W2974013948 @default.
- W4224883184 cites W2997919088 @default.
- W4224883184 cites W2999656021 @default.
- W4224883184 cites W3017791885 @default.
- W4224883184 cites W3026353565 @default.
- W4224883184 cites W3044853528 @default.
- W4224883184 cites W3081125651 @default.
- W4224883184 cites W3095666019 @default.
- W4224883184 cites W3110128651 @default.
- W4224883184 cites W3118299338 @default.
- W4224883184 cites W3120074042 @default.
- W4224883184 cites W3128042054 @default.
- W4224883184 cites W3128254342 @default.
- W4224883184 cites W3166116884 @default.
- W4224883184 doi "https://doi.org/10.1109/aisp53593.2022.9760688" @default.
- W4224883184 hasPublicationYear "2022" @default.
- W4224883184 type Work @default.
- W4224883184 citedByCount "1" @default.
- W4224883184 crossrefType "proceedings-article" @default.
- W4224883184 hasAuthorship W4224883184A5030395865 @default.
- W4224883184 hasAuthorship W4224883184A5043846025 @default.
- W4224883184 hasAuthorship W4224883184A5057783796 @default.
- W4224883184 hasAuthorship W4224883184A5058482802 @default.
- W4224883184 hasAuthorship W4224883184A5065829352 @default.
- W4224883184 hasConcept C110083411 @default.
- W4224883184 hasConcept C111472728 @default.
- W4224883184 hasConcept C115903097 @default.
- W4224883184 hasConcept C119857082 @default.
- W4224883184 hasConcept C12267149 @default.
- W4224883184 hasConcept C136389625 @default.
- W4224883184 hasConcept C138885662 @default.
- W4224883184 hasConcept C154945302 @default.
- W4224883184 hasConcept C15744967 @default.
- W4224883184 hasConcept C169258074 @default.
- W4224883184 hasConcept C2776372474 @default.
- W4224883184 hasConcept C33435437 @default.
- W4224883184 hasConcept C41008148 @default.
- W4224883184 hasConcept C50644808 @default.
- W4224883184 hasConcept C58973888 @default.
- W4224883184 hasConcept C77805123 @default.
- W4224883184 hasConcept C8038995 @default.
- W4224883184 hasConceptScore W4224883184C110083411 @default.
- W4224883184 hasConceptScore W4224883184C111472728 @default.
- W4224883184 hasConceptScore W4224883184C115903097 @default.
- W4224883184 hasConceptScore W4224883184C119857082 @default.
- W4224883184 hasConceptScore W4224883184C12267149 @default.
- W4224883184 hasConceptScore W4224883184C136389625 @default.
- W4224883184 hasConceptScore W4224883184C138885662 @default.
- W4224883184 hasConceptScore W4224883184C154945302 @default.
- W4224883184 hasConceptScore W4224883184C15744967 @default.
- W4224883184 hasConceptScore W4224883184C169258074 @default.
- W4224883184 hasConceptScore W4224883184C2776372474 @default.
- W4224883184 hasConceptScore W4224883184C33435437 @default.
- W4224883184 hasConceptScore W4224883184C41008148 @default.
- W4224883184 hasConceptScore W4224883184C50644808 @default.
- W4224883184 hasConceptScore W4224883184C58973888 @default.
- W4224883184 hasConceptScore W4224883184C77805123 @default.
- W4224883184 hasConceptScore W4224883184C8038995 @default.
- W4224883184 hasLocation W42248831841 @default.
- W4224883184 hasOpenAccess W4224883184 @default.
- W4224883184 hasPrimaryLocation W42248831841 @default.
- W4224883184 hasRelatedWork W1756896031 @default.
- W4224883184 hasRelatedWork W2531570999 @default.
- W4224883184 hasRelatedWork W3094076422 @default.
- W4224883184 hasRelatedWork W3196155444 @default.
- W4224883184 hasRelatedWork W3210156800 @default.
- W4224883184 hasRelatedWork W4200210524 @default.
- W4224883184 hasRelatedWork W4224883184 @default.
- W4224883184 hasRelatedWork W4285260836 @default.
- W4224883184 hasRelatedWork W4306321456 @default.
- W4224883184 hasRelatedWork W4319309271 @default.
- W4224883184 isParatext "false" @default.
- W4224883184 isRetracted "false" @default.
- W4224883184 workType "article" @default.