Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224920337> ?p ?o ?g. }
- W4224920337 endingPage "108972" @default.
- W4224920337 startingPage "108972" @default.
- W4224920337 abstract "Widespread adoption of eddy covariance (EC) methods for methane (CH4) flux measurement has led to increased availability of continuous high-frequency CH4 data. However, unreliable data frequently occur during periods of atmospheric stability, rain or instrument malfunction, requiring filtering prior to subsequent analyses. While procedures for assessing CO2 have matured, processes to filter and gap-fill CH4 data are less studied, as their range and controls are not as well-understood. Moreover, publications often fail to describe procedures for data processing and filtering. Our primary objective was to study effects of common filtering thresholds and provide insight on how size and timing of gaps produced by filtering affect CH4 budgets. We utilized 4 years of data from two freshwater wetlands under the same climate regime but different hydroperiods. We applied friction velocity (U*) and signal strength filtering treatments to isolate site-specific effects and evaluate impacts of filtering on subsequent gap-filling via Random Forests (RF). We also tested sensitivity of results to predictor datasets with an “unrestricted predictors model” (using all possible predictors regardless of gaps), versus a “restricted predictors model” (using gap-filled predictors with no missing values). Depending on filtering treatment, 7 - 50% of CH4 data were removed over the study period. Using higher signal strength thresholds introduced more small gaps. U* filtering created small gaps (mostly nighttime), and corresponding annual budget estimates were generally different from those filtered solely on signal strength but with higher uncertainty, especially at the long-hydroperiod site. Regardless of filtering method, RF models using unrestricted predictors identified 2- to 32-day average CH4 flux as primary predictors, whereas heat and latent energy were most important when predictors were restricted. Although filtering may have less impact on CH4 budgets than selection and pre-processing of predictor variables, it can significantly impact uncertainty and should be considered in data curation protocols." @default.
- W4224920337 created "2022-04-28" @default.
- W4224920337 creator A5000065777 @default.
- W4224920337 creator A5008164924 @default.
- W4224920337 creator A5016437475 @default.
- W4224920337 creator A5049203810 @default.
- W4224920337 creator A5073231128 @default.
- W4224920337 creator A5087060371 @default.
- W4224920337 date "2022-06-01" @default.
- W4224920337 modified "2023-10-16" @default.
- W4224920337 title "Methane emissions from subtropical wetlands: An evaluation of the role of data filtering on annual methane budgets" @default.
- W4224920337 cites W1057605271 @default.
- W4224920337 cites W1552456432 @default.
- W4224920337 cites W1608992375 @default.
- W4224920337 cites W1969381935 @default.
- W4224920337 cites W1984177205 @default.
- W4224920337 cites W1991864041 @default.
- W4224920337 cites W2015795336 @default.
- W4224920337 cites W2022904975 @default.
- W4224920337 cites W2033991808 @default.
- W4224920337 cites W2038254423 @default.
- W4224920337 cites W2050728582 @default.
- W4224920337 cites W2058522703 @default.
- W4224920337 cites W2068796035 @default.
- W4224920337 cites W2071323141 @default.
- W4224920337 cites W2084300697 @default.
- W4224920337 cites W2089201803 @default.
- W4224920337 cites W2089563449 @default.
- W4224920337 cites W2092131123 @default.
- W4224920337 cites W2096409528 @default.
- W4224920337 cites W2100643889 @default.
- W4224920337 cites W2103869356 @default.
- W4224920337 cites W2108386451 @default.
- W4224920337 cites W2112081076 @default.
- W4224920337 cites W2124179968 @default.
- W4224920337 cites W2125940696 @default.
- W4224920337 cites W2128342866 @default.
- W4224920337 cites W2131223236 @default.
- W4224920337 cites W2145293626 @default.
- W4224920337 cites W2149541905 @default.
- W4224920337 cites W2149794122 @default.
- W4224920337 cites W2155261478 @default.
- W4224920337 cites W2156748700 @default.
- W4224920337 cites W2169118492 @default.
- W4224920337 cites W2170605977 @default.
- W4224920337 cites W2197862906 @default.
- W4224920337 cites W2327046488 @default.
- W4224920337 cites W2338807626 @default.
- W4224920337 cites W2461937619 @default.
- W4224920337 cites W2529007538 @default.
- W4224920337 cites W2539936789 @default.
- W4224920337 cites W2572855468 @default.
- W4224920337 cites W2587890738 @default.
- W4224920337 cites W2622992239 @default.
- W4224920337 cites W2767527218 @default.
- W4224920337 cites W2781711075 @default.
- W4224920337 cites W2786315765 @default.
- W4224920337 cites W2792932093 @default.
- W4224920337 cites W2802977041 @default.
- W4224920337 cites W2805814777 @default.
- W4224920337 cites W2887176132 @default.
- W4224920337 cites W2900315497 @default.
- W4224920337 cites W2905523487 @default.
- W4224920337 cites W2911964244 @default.
- W4224920337 cites W2915027405 @default.
- W4224920337 cites W2921884978 @default.
- W4224920337 cites W2935912737 @default.
- W4224920337 cites W2955921102 @default.
- W4224920337 cites W2956252856 @default.
- W4224920337 cites W2972407136 @default.
- W4224920337 cites W2974202733 @default.
- W4224920337 cites W2975926778 @default.
- W4224920337 cites W2990293310 @default.
- W4224920337 cites W2995806893 @default.
- W4224920337 cites W3011913880 @default.
- W4224920337 cites W3125357239 @default.
- W4224920337 cites W3129218789 @default.
- W4224920337 cites W3181827495 @default.
- W4224920337 doi "https://doi.org/10.1016/j.agrformet.2022.108972" @default.
- W4224920337 hasPublicationYear "2022" @default.
- W4224920337 type Work @default.
- W4224920337 citedByCount "1" @default.
- W4224920337 countsByYear W42249203372022 @default.
- W4224920337 crossrefType "journal-article" @default.
- W4224920337 hasAuthorship W4224920337A5000065777 @default.
- W4224920337 hasAuthorship W4224920337A5008164924 @default.
- W4224920337 hasAuthorship W4224920337A5016437475 @default.
- W4224920337 hasAuthorship W4224920337A5049203810 @default.
- W4224920337 hasAuthorship W4224920337A5073231128 @default.
- W4224920337 hasAuthorship W4224920337A5087060371 @default.
- W4224920337 hasBestOaLocation W42249203371 @default.
- W4224920337 hasConcept C105795698 @default.
- W4224920337 hasConcept C106131492 @default.
- W4224920337 hasConcept C110872660 @default.
- W4224920337 hasConcept C112972136 @default.
- W4224920337 hasConcept C119857082 @default.
- W4224920337 hasConcept C127313418 @default.
- W4224920337 hasConcept C127413603 @default.