Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224922010> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4224922010 abstract "Aim: To detect the spam content over the internet and social media using Logistic Regression algorithm over Gaussian algorithm. Methods and Materials: Detection of spam content messages are performed using Logistic Regression algorithm and Gaussian algorithm (sample size=20) Where values are taken randomly. G-power was maintained to be 80%. Results and Discussion: This article is an attempt to improve the accuracy of spam content detection using the Logistic Regression algorithm, a machine learning algorithm. The AI based Application avoids overfitting. The proposed model has improved accuracy of 95% with p value which is less than 0.03(p<0.05) in spam detection than Gaussian algorithm having accuracy of 93%. Conclusion: The outcomes of the proposed model Logistic regression algorithm was compared with the Gaussian algorithm. The proposed model Logistic regression algorithm was compared with the Gaussian algorithm. The proposed algorithm seems to have higher accuracy than the Gaussian algorithm." @default.
- W4224922010 created "2022-04-28" @default.
- W4224922010 creator A5077208390 @default.
- W4224922010 creator A5088612507 @default.
- W4224922010 date "2022-02-16" @default.
- W4224922010 modified "2023-09-27" @default.
- W4224922010 title "Novel Detection of Accurate Spam Content using Logistic Regression Algorithm Compared with Gaussian Algorithm" @default.
- W4224922010 cites W1499036818 @default.
- W4224922010 cites W1694898599 @default.
- W4224922010 cites W2119246282 @default.
- W4224922010 cites W2130265750 @default.
- W4224922010 cites W2132718725 @default.
- W4224922010 cites W2142354813 @default.
- W4224922010 cites W2156324526 @default.
- W4224922010 cites W2320194039 @default.
- W4224922010 cites W2411365862 @default.
- W4224922010 cites W2893491761 @default.
- W4224922010 cites W2904555548 @default.
- W4224922010 cites W2911634592 @default.
- W4224922010 cites W2911985709 @default.
- W4224922010 cites W2945719950 @default.
- W4224922010 cites W2997258927 @default.
- W4224922010 cites W3035764154 @default.
- W4224922010 cites W3041162515 @default.
- W4224922010 cites W3128749121 @default.
- W4224922010 cites W3154927178 @default.
- W4224922010 cites W3203798113 @default.
- W4224922010 doi "https://doi.org/10.1109/icbats54253.2022.9759003" @default.
- W4224922010 hasPublicationYear "2022" @default.
- W4224922010 type Work @default.
- W4224922010 citedByCount "1" @default.
- W4224922010 countsByYear W42249220102023 @default.
- W4224922010 crossrefType "proceedings-article" @default.
- W4224922010 hasAuthorship W4224922010A5077208390 @default.
- W4224922010 hasAuthorship W4224922010A5088612507 @default.
- W4224922010 hasConcept C110083411 @default.
- W4224922010 hasConcept C11413529 @default.
- W4224922010 hasConcept C119857082 @default.
- W4224922010 hasConcept C121332964 @default.
- W4224922010 hasConcept C151956035 @default.
- W4224922010 hasConcept C154945302 @default.
- W4224922010 hasConcept C163716315 @default.
- W4224922010 hasConcept C166550679 @default.
- W4224922010 hasConcept C22019652 @default.
- W4224922010 hasConcept C41008148 @default.
- W4224922010 hasConcept C50644808 @default.
- W4224922010 hasConcept C61722155 @default.
- W4224922010 hasConcept C62520636 @default.
- W4224922010 hasConceptScore W4224922010C110083411 @default.
- W4224922010 hasConceptScore W4224922010C11413529 @default.
- W4224922010 hasConceptScore W4224922010C119857082 @default.
- W4224922010 hasConceptScore W4224922010C121332964 @default.
- W4224922010 hasConceptScore W4224922010C151956035 @default.
- W4224922010 hasConceptScore W4224922010C154945302 @default.
- W4224922010 hasConceptScore W4224922010C163716315 @default.
- W4224922010 hasConceptScore W4224922010C166550679 @default.
- W4224922010 hasConceptScore W4224922010C22019652 @default.
- W4224922010 hasConceptScore W4224922010C41008148 @default.
- W4224922010 hasConceptScore W4224922010C50644808 @default.
- W4224922010 hasConceptScore W4224922010C61722155 @default.
- W4224922010 hasConceptScore W4224922010C62520636 @default.
- W4224922010 hasLocation W42249220101 @default.
- W4224922010 hasOpenAccess W4224922010 @default.
- W4224922010 hasPrimaryLocation W42249220101 @default.
- W4224922010 hasRelatedWork W2096857094 @default.
- W4224922010 hasRelatedWork W2989932438 @default.
- W4224922010 hasRelatedWork W3011996705 @default.
- W4224922010 hasRelatedWork W3099765033 @default.
- W4224922010 hasRelatedWork W3175189414 @default.
- W4224922010 hasRelatedWork W4210794429 @default.
- W4224922010 hasRelatedWork W4224922010 @default.
- W4224922010 hasRelatedWork W4225307033 @default.
- W4224922010 hasRelatedWork W4316087365 @default.
- W4224922010 hasRelatedWork W4316658362 @default.
- W4224922010 isParatext "false" @default.
- W4224922010 isRetracted "false" @default.
- W4224922010 workType "article" @default.