Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224944632> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4224944632 abstract "In this paper, we focus on simultaneously recovering the 3D mesh of multiple body parts from a single RGB image. One of the main challenges is that available datasets with full-body 3D annotations are very limited. This results in poor generalization ability of existing learning-based methods. Existing optimization-based methods iteratively fit the 3D mesh to the 2d pose, which is very time-consuming. To address these limitations, we propose to integrate multiple 3D single-body-part datasets to create a highly diverse whole-body 3D motion space for learning from controllable synthetics. Compared with the learning-based approaches, the proposed method greatly alleviates the reliance on training data. Compared with the optimization-based approaches, the proposed method is a hundred times faster. Our proposed method also outperforms previous state-of-the-art methods on CMU Panoptic dataset." @default.
- W4224944632 created "2022-04-28" @default.
- W4224944632 creator A5001776079 @default.
- W4224944632 creator A5008597054 @default.
- W4224944632 creator A5013246830 @default.
- W4224944632 creator A5058055859 @default.
- W4224944632 creator A5068917997 @default.
- W4224944632 creator A5084875333 @default.
- W4224944632 date "2022-05-23" @default.
- W4224944632 modified "2023-09-28" @default.
- W4224944632 title "Learning Monocular Mesh Recovery of Multiple Body Parts Via Synthesis" @default.
- W4224944632 cites W1967554269 @default.
- W4224944632 cites W2080873731 @default.
- W4224944632 cites W2559085405 @default.
- W4224944632 cites W2768683308 @default.
- W4224944632 cites W2797184202 @default.
- W4224944632 cites W2963409517 @default.
- W4224944632 cites W2963515833 @default.
- W4224944632 cites W2963873475 @default.
- W4224944632 cites W2963907666 @default.
- W4224944632 cites W2963995996 @default.
- W4224944632 cites W2964093990 @default.
- W4224944632 cites W2971856312 @default.
- W4224944632 cites W2978956737 @default.
- W4224944632 cites W2990270790 @default.
- W4224944632 cites W3013785695 @default.
- W4224944632 cites W3174690545 @default.
- W4224944632 cites W4214619583 @default.
- W4224944632 doi "https://doi.org/10.1109/icassp43922.2022.9747426" @default.
- W4224944632 hasPublicationYear "2022" @default.
- W4224944632 type Work @default.
- W4224944632 citedByCount "2" @default.
- W4224944632 countsByYear W42249446322023 @default.
- W4224944632 crossrefType "proceedings-article" @default.
- W4224944632 hasAuthorship W4224944632A5001776079 @default.
- W4224944632 hasAuthorship W4224944632A5008597054 @default.
- W4224944632 hasAuthorship W4224944632A5013246830 @default.
- W4224944632 hasAuthorship W4224944632A5058055859 @default.
- W4224944632 hasAuthorship W4224944632A5068917997 @default.
- W4224944632 hasAuthorship W4224944632A5084875333 @default.
- W4224944632 hasConcept C119857082 @default.
- W4224944632 hasConcept C120665830 @default.
- W4224944632 hasConcept C121332964 @default.
- W4224944632 hasConcept C134306372 @default.
- W4224944632 hasConcept C153180895 @default.
- W4224944632 hasConcept C154945302 @default.
- W4224944632 hasConcept C177148314 @default.
- W4224944632 hasConcept C192209626 @default.
- W4224944632 hasConcept C31972630 @default.
- W4224944632 hasConcept C33923547 @default.
- W4224944632 hasConcept C41008148 @default.
- W4224944632 hasConcept C65909025 @default.
- W4224944632 hasConcept C82990744 @default.
- W4224944632 hasConceptScore W4224944632C119857082 @default.
- W4224944632 hasConceptScore W4224944632C120665830 @default.
- W4224944632 hasConceptScore W4224944632C121332964 @default.
- W4224944632 hasConceptScore W4224944632C134306372 @default.
- W4224944632 hasConceptScore W4224944632C153180895 @default.
- W4224944632 hasConceptScore W4224944632C154945302 @default.
- W4224944632 hasConceptScore W4224944632C177148314 @default.
- W4224944632 hasConceptScore W4224944632C192209626 @default.
- W4224944632 hasConceptScore W4224944632C31972630 @default.
- W4224944632 hasConceptScore W4224944632C33923547 @default.
- W4224944632 hasConceptScore W4224944632C41008148 @default.
- W4224944632 hasConceptScore W4224944632C65909025 @default.
- W4224944632 hasConceptScore W4224944632C82990744 @default.
- W4224944632 hasLocation W42249446321 @default.
- W4224944632 hasOpenAccess W4224944632 @default.
- W4224944632 hasPrimaryLocation W42249446321 @default.
- W4224944632 hasRelatedWork W2094957557 @default.
- W4224944632 hasRelatedWork W2113039159 @default.
- W4224944632 hasRelatedWork W2283162247 @default.
- W4224944632 hasRelatedWork W2314488738 @default.
- W4224944632 hasRelatedWork W2524507886 @default.
- W4224944632 hasRelatedWork W2743237568 @default.
- W4224944632 hasRelatedWork W2980953096 @default.
- W4224944632 hasRelatedWork W3102636071 @default.
- W4224944632 hasRelatedWork W4212983513 @default.
- W4224944632 hasRelatedWork W4224011692 @default.
- W4224944632 isParatext "false" @default.
- W4224944632 isRetracted "false" @default.
- W4224944632 workType "article" @default.