Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224947504> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4224947504 abstract "Credit card fraud detection is a critical problem for any credit card issuing banks. The AdaBoost classifier is used in this study to identify fraudulent transactions. By comparing the proposed algorithm with Naive Bayes, logistic regression, ANN and decision tree algorithms the efficiency of the algorithm is evaluated. A total of 2,84,807 transactions are divided into two subsets: a training dataset [n=2,27,845 (80%)] and a test dataset [n=56,962 (20%)] (0.8 g power). Out of 2,84,S07 transactions in the dataset, 492 transactions are fraud transactions. To detect the credit card frauds Adaboost algorithm is used and various machine learning algorithms are compared with it for performance evaluation. To determine the performance of algorithms, metrics such as accuracy, sensitivity, specificity, precision, and f-score are estimated. The detection accuracies of AdaBoost, Naive Bayes, logistic regression, ANN and decision tree algorithms are 99.43%, 90.93%, 95.35%, 94.81% and 94.81% respectively. The AdaBoost algorithm obtained an f-score of 99.48% with significance value p<0.05. From the qualitative analysis, it is observed that the proposed AdaBoost algorithm performed significantly better than the Naive Bayes, logistic regression, ANN and decision tree algorithms in detecting credit card frauds." @default.
- W4224947504 created "2022-04-28" @default.
- W4224947504 creator A5029707491 @default.
- W4224947504 creator A5056348464 @default.
- W4224947504 date "2022-02-16" @default.
- W4224947504 modified "2023-10-14" @default.
- W4224947504 title "Credit Card Fraud Detection using AdaBoost Algorithm in Comparison with Various Machine Learning Algorithms to Measure Accuracy, Sensitivity, Specificity, Precision and F-score" @default.
- W4224947504 cites W1970850322 @default.
- W4224947504 cites W1973533434 @default.
- W4224947504 cites W2046737198 @default.
- W4224947504 cites W2105942355 @default.
- W4224947504 cites W2160150610 @default.
- W4224947504 cites W2167287136 @default.
- W4224947504 cites W2558890589 @default.
- W4224947504 cites W2772947247 @default.
- W4224947504 cites W2785637175 @default.
- W4224947504 cites W2886330306 @default.
- W4224947504 cites W2904555548 @default.
- W4224947504 cites W2911985709 @default.
- W4224947504 cites W2912173721 @default.
- W4224947504 cites W2920872036 @default.
- W4224947504 cites W3006682208 @default.
- W4224947504 cites W3023003778 @default.
- W4224947504 cites W3111432325 @default.
- W4224947504 cites W3135425250 @default.
- W4224947504 doi "https://doi.org/10.1109/icbats54253.2022.9759022" @default.
- W4224947504 hasPublicationYear "2022" @default.
- W4224947504 type Work @default.
- W4224947504 citedByCount "3" @default.
- W4224947504 countsByYear W42249475042023 @default.
- W4224947504 crossrefType "proceedings-article" @default.
- W4224947504 hasAuthorship W4224947504A5029707491 @default.
- W4224947504 hasAuthorship W4224947504A5056348464 @default.
- W4224947504 hasConcept C110083411 @default.
- W4224947504 hasConcept C11413529 @default.
- W4224947504 hasConcept C119857082 @default.
- W4224947504 hasConcept C12267149 @default.
- W4224947504 hasConcept C124101348 @default.
- W4224947504 hasConcept C136764020 @default.
- W4224947504 hasConcept C141404830 @default.
- W4224947504 hasConcept C145097563 @default.
- W4224947504 hasConcept C151956035 @default.
- W4224947504 hasConcept C154945302 @default.
- W4224947504 hasConcept C2780747020 @default.
- W4224947504 hasConcept C2983355114 @default.
- W4224947504 hasConcept C41008148 @default.
- W4224947504 hasConcept C52001869 @default.
- W4224947504 hasConcept C84525736 @default.
- W4224947504 hasConcept C95623464 @default.
- W4224947504 hasConceptScore W4224947504C110083411 @default.
- W4224947504 hasConceptScore W4224947504C11413529 @default.
- W4224947504 hasConceptScore W4224947504C119857082 @default.
- W4224947504 hasConceptScore W4224947504C12267149 @default.
- W4224947504 hasConceptScore W4224947504C124101348 @default.
- W4224947504 hasConceptScore W4224947504C136764020 @default.
- W4224947504 hasConceptScore W4224947504C141404830 @default.
- W4224947504 hasConceptScore W4224947504C145097563 @default.
- W4224947504 hasConceptScore W4224947504C151956035 @default.
- W4224947504 hasConceptScore W4224947504C154945302 @default.
- W4224947504 hasConceptScore W4224947504C2780747020 @default.
- W4224947504 hasConceptScore W4224947504C2983355114 @default.
- W4224947504 hasConceptScore W4224947504C41008148 @default.
- W4224947504 hasConceptScore W4224947504C52001869 @default.
- W4224947504 hasConceptScore W4224947504C84525736 @default.
- W4224947504 hasConceptScore W4224947504C95623464 @default.
- W4224947504 hasLocation W42249475041 @default.
- W4224947504 hasOpenAccess W4224947504 @default.
- W4224947504 hasPrimaryLocation W42249475041 @default.
- W4224947504 hasRelatedWork W2553238562 @default.
- W4224947504 hasRelatedWork W3204641204 @default.
- W4224947504 hasRelatedWork W4200057378 @default.
- W4224947504 hasRelatedWork W4206019394 @default.
- W4224947504 hasRelatedWork W4211004016 @default.
- W4224947504 hasRelatedWork W4224212887 @default.
- W4224947504 hasRelatedWork W4224947504 @default.
- W4224947504 hasRelatedWork W4249229055 @default.
- W4224947504 hasRelatedWork W4286641170 @default.
- W4224947504 hasRelatedWork W4293069612 @default.
- W4224947504 isParatext "false" @default.
- W4224947504 isRetracted "false" @default.
- W4224947504 workType "article" @default.