Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224951909> ?p ?o ?g. }
- W4224951909 endingPage "902" @default.
- W4224951909 startingPage "902" @default.
- W4224951909 abstract "Background: Nanosilver possesses antiviral, antibacterial, anti-inflammatory, anti-angiogenesis, antiplatelet, and anticancer properties. The development of disinfectants, inactivated vaccines, and combined etiotropic and immunomodulation therapy against respiratory viral infections, including COVID-19, remains urgent. Aim: Our goal was to determine the SARS-CoV-2 molecular targets (genomic RNA and the structural virion proteins S and N) for silver-containing nanomaterials. Methods: SARS-CoV-2 gene cloning, purification of S2 and N recombinant proteins, viral RNA isolation from patients’ blood samples, reverse transcription with quantitative real-time PCR ((RT)2-PCR), ELISA, and multiplex immunofluorescent analysis with magnetic beads (xMAP) for detection of 17 inflammation markers. Results: Fluorescent Ag nanoclusters (NCs) less than 2 nm with a few recovered silver atoms, citrate coated Ag nanoparticles (NPs) with diameters of 20–120 nm, and nanoconjugates of 50–150 nm consisting of Ag NPs with different protein envelopes were constructed from AgNO3 and analyzed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible light absorption, and fluorescent spectroscopy. SARS-CoV-2 RNA isolated from COVID-19 patients’ blood samples was completely cleaved with the artificial RNase complex compound Li+[Ag+2Cys2−(OH−)2(NH3)2] (Ag-2S), whereas other Ag-containing materials provided partial RNA degradation only. Treatment of the SARS-CoV-2 S2 and N recombinant antigens with AgNO3 and Ag NPs inhibited their binding with specific polyclonal antibodies, as shown by ELISA. Fluorescent Ag NCs with albumin or immunoglobulins, Ag-2S complex, and nanoconjugates of Ag NPs with protein shells had no effect on the interaction between coronavirus recombinant antigens and antibodies. Reduced production of a majority of the 17 inflammation biomarkers after treatment of three human cell lines with nanosilver was demonstrated by xMAP. Conclusion: The antiviral properties of the silver nanomaterials against SARS-CoV-2 coronavirus differed. The small-molecular-weight artificial RNase Ag-2S provided exhaustive RNA destruction but could not bind with the SARS-CoV-2 recombinant antigens. On the contrary, Ag+ ions and Ag NPs interacted with the SARS-CoV-2 recombinant antigens N and S but were less efficient at performing viral RNA cleavage. One should note that SARS-CoV-2 RNA was more stable than MS2 phage RNA. The isolated RNA of both the MS2 phage and SARS-CoV-2 were more degradable than the MS2 phage and coronavirus particles in patients’ blood, due to the protection with structural proteins. To reduce the risk of the virus resistance, a combined treatment with Ag-2S and Ag NPs could be used. To prevent cytokine storm during the early stages of respiratory infections with RNA-containing viruses, nanoconjugates of Ag NPs with surface proteins could be recommended." @default.
- W4224951909 created "2022-04-28" @default.
- W4224951909 creator A5019815015 @default.
- W4224951909 creator A5024187939 @default.
- W4224951909 creator A5039244382 @default.
- W4224951909 creator A5046061810 @default.
- W4224951909 creator A5069365857 @default.
- W4224951909 creator A5073385630 @default.
- W4224951909 creator A5086388782 @default.
- W4224951909 creator A5087128396 @default.
- W4224951909 date "2022-04-26" @default.
- W4224951909 modified "2023-10-17" @default.
- W4224951909 title "Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins" @default.
- W4224951909 cites W1970673070 @default.
- W4224951909 cites W1980111069 @default.
- W4224951909 cites W1996647844 @default.
- W4224951909 cites W2004847083 @default.
- W4224951909 cites W2010305628 @default.
- W4224951909 cites W2014875584 @default.
- W4224951909 cites W2040499564 @default.
- W4224951909 cites W2062262251 @default.
- W4224951909 cites W2077041521 @default.
- W4224951909 cites W2104154679 @default.
- W4224951909 cites W2104777023 @default.
- W4224951909 cites W2152757346 @default.
- W4224951909 cites W2331294724 @default.
- W4224951909 cites W2417636339 @default.
- W4224951909 cites W2463782456 @default.
- W4224951909 cites W2589067428 @default.
- W4224951909 cites W2606360758 @default.
- W4224951909 cites W2783702966 @default.
- W4224951909 cites W2786106161 @default.
- W4224951909 cites W2884891882 @default.
- W4224951909 cites W2897523836 @default.
- W4224951909 cites W2964993739 @default.
- W4224951909 cites W3001897055 @default.
- W4224951909 cites W3009446530 @default.
- W4224951909 cites W3021514001 @default.
- W4224951909 cites W3023937594 @default.
- W4224951909 cites W3080077190 @default.
- W4224951909 cites W3085201671 @default.
- W4224951909 cites W3090897708 @default.
- W4224951909 cites W3094419073 @default.
- W4224951909 cites W311927316 @default.
- W4224951909 cites W3119669049 @default.
- W4224951909 cites W3130256198 @default.
- W4224951909 cites W3135277774 @default.
- W4224951909 cites W318757947 @default.
- W4224951909 cites W3200607696 @default.
- W4224951909 cites W3200709423 @default.
- W4224951909 cites W4205625528 @default.
- W4224951909 cites W4226488314 @default.
- W4224951909 cites W92409275 @default.
- W4224951909 doi "https://doi.org/10.3390/v14050902" @default.
- W4224951909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35632644" @default.
- W4224951909 hasPublicationYear "2022" @default.
- W4224951909 type Work @default.
- W4224951909 citedByCount "6" @default.
- W4224951909 countsByYear W42249519092022 @default.
- W4224951909 countsByYear W42249519092023 @default.
- W4224951909 crossrefType "journal-article" @default.
- W4224951909 hasAuthorship W4224951909A5019815015 @default.
- W4224951909 hasAuthorship W4224951909A5024187939 @default.
- W4224951909 hasAuthorship W4224951909A5039244382 @default.
- W4224951909 hasAuthorship W4224951909A5046061810 @default.
- W4224951909 hasAuthorship W4224951909A5069365857 @default.
- W4224951909 hasAuthorship W4224951909A5073385630 @default.
- W4224951909 hasAuthorship W4224951909A5086388782 @default.
- W4224951909 hasAuthorship W4224951909A5087128396 @default.
- W4224951909 hasBestOaLocation W42249519091 @default.
- W4224951909 hasConcept C104317684 @default.
- W4224951909 hasConcept C10879258 @default.
- W4224951909 hasConcept C153911025 @default.
- W4224951909 hasConcept C155672457 @default.
- W4224951909 hasConcept C159654299 @default.
- W4224951909 hasConcept C171250308 @default.
- W4224951909 hasConcept C178790620 @default.
- W4224951909 hasConcept C185592680 @default.
- W4224951909 hasConcept C192562407 @default.
- W4224951909 hasConcept C203014093 @default.
- W4224951909 hasConcept C2778402822 @default.
- W4224951909 hasConcept C31499863 @default.
- W4224951909 hasConcept C40767141 @default.
- W4224951909 hasConcept C55493867 @default.
- W4224951909 hasConcept C60325843 @default.
- W4224951909 hasConcept C67705224 @default.
- W4224951909 hasConcept C86803240 @default.
- W4224951909 hasConcept C956191 @default.
- W4224951909 hasConceptScore W4224951909C104317684 @default.
- W4224951909 hasConceptScore W4224951909C10879258 @default.
- W4224951909 hasConceptScore W4224951909C153911025 @default.
- W4224951909 hasConceptScore W4224951909C155672457 @default.
- W4224951909 hasConceptScore W4224951909C159654299 @default.
- W4224951909 hasConceptScore W4224951909C171250308 @default.
- W4224951909 hasConceptScore W4224951909C178790620 @default.
- W4224951909 hasConceptScore W4224951909C185592680 @default.
- W4224951909 hasConceptScore W4224951909C192562407 @default.
- W4224951909 hasConceptScore W4224951909C203014093 @default.