Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224979105> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4224979105 abstract "HomeCirculation: Cardiovascular Quality and OutcomesVol. 15, No. 6Extracting More From Less: A New Frontier for High-Throughput Clinical Phenotyping No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextExtracting More From Less: A New Frontier for High-Throughput Clinical Phenotyping David Ouyang and Susan Cheng David OuyangDavid Ouyang Correspondence to: David Ouyang, MD, Department of Cardiology, Smidt Heart Institute, Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048. Email E-mail Address: [email protected] https://orcid.org/0000-0002-3813-7518 Department of Cardiology, Smidt Heart Institute (D.O., S.C.), Cedars-Sinai Medical Center, Los Angeles, CA. Division of Artificial Intelligence in Medicine (D.O.), Cedars-Sinai Medical Center, Los Angeles, CA. Search for more papers by this author and Susan ChengSusan Cheng https://orcid.org/0000-0002-4977-036X Department of Cardiology, Smidt Heart Institute (D.O., S.C.), Cedars-Sinai Medical Center, Los Angeles, CA. Search for more papers by this author Originally published28 Apr 2022https://doi.org/10.1161/CIRCOUTCOMES.122.009055Circulation: Cardiovascular Quality and Outcomes. 2022;15This article is a commentary on the followingCardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic PredictorsExtracting More From Less: A New Frontier for High-Throughput Clinical Phenotyping. Circulation: Cardiovascular Quality and Outcomes, 15(6), pp. e009055FootnotesThe opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.For Disclosures, see page 392.Correspondence to: David Ouyang, MD, Department of Cardiology, Smidt Heart Institute, Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048. Email david.[email protected]orgReferences1. Chen JH, Asch SM. Machine eearning and prediction in medicine - beyond the peak of inflated expectations.N Engl J Med. 2017; 376:2507–2509. doi: 10.1056/NEJMp1702071CrossrefMedlineGoogle Scholar2. Ouyang D, Zou J. Deep learning models to detect hidden clinical correlates.Lancet Digit Health. 2020; 2:e334–e335. doi: 10.1016/S2589-7500(20)30138-2CrossrefMedlineGoogle Scholar3. Goto S, Homilius M, John JE, Truslow JG, Werdich AA, Blood AJ, Park BH, MacRae CA, Deo RC. Artificial intelligence-enabled event adjudication: estimating delayed cardiovascular effects of respiratory viruses [Internet].bioRxiv. 2020; Available from: http://medrxiv.org/lookup/doi/10.1101/2020.11.12.20230706Google Scholar4. Cheng S, Fernandes VR, Bluemke DA, McClelland RL, Kronmal RA, Lima JA. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis.Circ Cardiovasc Imaging. 2009; 2:191–198. doi: 10.1161/CIRCIMAGING.108.819938LinkGoogle Scholar5. Truslow JG, Goto S, Homilius M, Mow C, Higgins JM, MacRae CA, Deo RC. Cardiovascular risk assessment using artificial intelligence-enabled event adjudication and hematologic predictors.Circ Cardiovasc Qual Outcomes. 2022; 15:377–390. doi: 10.1161/CIRCOUTCOMES.121.008007.LinkGoogle Scholar6. Kwon JM, Cho Y, Jeon KH, Cho S, Kim KH, Baek SD, Jeung S, Park J, Oh BH. A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study.Lancet Digit Health. 2020; 2:e358–e367. doi: 10.1016/S2589-7500(20)30108-4CrossrefMedlineGoogle Scholar7. Hughes JW, Yuan N, He B, Ouyang J, Ebinger J, Botting P, Lee J, Theurer J, Tooley JE, Nieman K, et al. Deep learning evaluation of biomarkers from echocardiogram videos.EBioMed. 2021; 73:103613. doi: 10.1016/j.ebiom.2021.103613CrossrefMedlineGoogle Scholar8. Ponikowski P, Kirwan BA, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Göhring UM, Keren A, et al; AFFIRM-AHF investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial.Lancet. 2020; 396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4CrossrefMedlineGoogle Scholar9. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, Khanykin B, Gregory AJ, de Médicis É, McGuinness S, et al; TRICS Investigators and Perioperative Anesthesia Clinical Trials Group. Restrictive or liberal red-cell transfusion for cardiac surgery.N Engl J Med. 2017; 377:2133–2144. doi: 10.1056/NEJMoa1711818CrossrefMedlineGoogle Scholar10. Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, et al; TRISS Trial Group; Scandinavian Critical Care Trials Group. Lower versus higher hemoglobin threshold for transfusion in septic shock.N Engl J Med. 2014; 371:1381–1391. doi: 10.1056/NEJMoa1406617CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesCardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic PredictorsJames G. Truslow, et al. Circulation: Cardiovascular Quality and Outcomes. 2022;15 June 2022Vol 15, Issue 6 Advertisement Article InformationMetrics © 2022 American Heart Association, Inc.https://doi.org/10.1161/CIRCOUTCOMES.122.009055PMID: 35477258 Originally publishedApril 28, 2022 Keywordselectronic health recordsalgorithmsEditorialssciencemedicineartificial intelligencePDF download Advertisement SubjectsDiagnostic Testing" @default.
- W4224979105 created "2022-04-28" @default.
- W4224979105 creator A5025695986 @default.
- W4224979105 creator A5083779857 @default.
- W4224979105 date "2022-06-01" @default.
- W4224979105 modified "2023-10-09" @default.
- W4224979105 title "Extracting More From Less: A New Frontier for High-Throughput Clinical Phenotyping" @default.
- W4224979105 cites W2162217713 @default.
- W4224979105 cites W2169558208 @default.
- W4224979105 cites W2727650337 @default.
- W4224979105 cites W2767380802 @default.
- W4224979105 cites W3037532105 @default.
- W4224979105 cites W3038123542 @default.
- W4224979105 cites W3100516213 @default.
- W4224979105 cites W3106240111 @default.
- W4224979105 cites W3206950749 @default.
- W4224979105 cites W4225011376 @default.
- W4224979105 doi "https://doi.org/10.1161/circoutcomes.122.009055" @default.
- W4224979105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35477258" @default.
- W4224979105 hasPublicationYear "2022" @default.
- W4224979105 type Work @default.
- W4224979105 citedByCount "0" @default.
- W4224979105 crossrefType "journal-article" @default.
- W4224979105 hasAuthorship W4224979105A5025695986 @default.
- W4224979105 hasAuthorship W4224979105A5083779857 @default.
- W4224979105 hasBestOaLocation W42249791052 @default.
- W4224979105 hasConcept C126322002 @default.
- W4224979105 hasConcept C138885662 @default.
- W4224979105 hasConcept C157764524 @default.
- W4224979105 hasConcept C161191863 @default.
- W4224979105 hasConcept C164913051 @default.
- W4224979105 hasConcept C17744445 @default.
- W4224979105 hasConcept C199539241 @default.
- W4224979105 hasConcept C2778571376 @default.
- W4224979105 hasConcept C2993936978 @default.
- W4224979105 hasConcept C41008148 @default.
- W4224979105 hasConcept C41895202 @default.
- W4224979105 hasConcept C512399662 @default.
- W4224979105 hasConcept C555944384 @default.
- W4224979105 hasConcept C71924100 @default.
- W4224979105 hasConcept C74909509 @default.
- W4224979105 hasConcept C76155785 @default.
- W4224979105 hasConceptScore W4224979105C126322002 @default.
- W4224979105 hasConceptScore W4224979105C138885662 @default.
- W4224979105 hasConceptScore W4224979105C157764524 @default.
- W4224979105 hasConceptScore W4224979105C161191863 @default.
- W4224979105 hasConceptScore W4224979105C164913051 @default.
- W4224979105 hasConceptScore W4224979105C17744445 @default.
- W4224979105 hasConceptScore W4224979105C199539241 @default.
- W4224979105 hasConceptScore W4224979105C2778571376 @default.
- W4224979105 hasConceptScore W4224979105C2993936978 @default.
- W4224979105 hasConceptScore W4224979105C41008148 @default.
- W4224979105 hasConceptScore W4224979105C41895202 @default.
- W4224979105 hasConceptScore W4224979105C512399662 @default.
- W4224979105 hasConceptScore W4224979105C555944384 @default.
- W4224979105 hasConceptScore W4224979105C71924100 @default.
- W4224979105 hasConceptScore W4224979105C74909509 @default.
- W4224979105 hasConceptScore W4224979105C76155785 @default.
- W4224979105 hasIssue "6" @default.
- W4224979105 hasLocation W42249791051 @default.
- W4224979105 hasLocation W42249791052 @default.
- W4224979105 hasLocation W42249791053 @default.
- W4224979105 hasOpenAccess W4224979105 @default.
- W4224979105 hasPrimaryLocation W42249791051 @default.
- W4224979105 hasRelatedWork W2041961361 @default.
- W4224979105 hasRelatedWork W2046798653 @default.
- W4224979105 hasRelatedWork W2069525434 @default.
- W4224979105 hasRelatedWork W2310010941 @default.
- W4224979105 hasRelatedWork W2318374363 @default.
- W4224979105 hasRelatedWork W2334292868 @default.
- W4224979105 hasRelatedWork W2347401120 @default.
- W4224979105 hasRelatedWork W3199430700 @default.
- W4224979105 hasRelatedWork W4226099950 @default.
- W4224979105 hasRelatedWork W579144800 @default.
- W4224979105 hasVolume "15" @default.
- W4224979105 isParatext "false" @default.
- W4224979105 isRetracted "false" @default.
- W4224979105 workType "article" @default.