Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224990413> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4224990413 endingPage "117" @default.
- W4224990413 startingPage "110" @default.
- W4224990413 abstract "A new hybrid machine learning method for the prediction of type 2 diabetes is introduced and explained in detail. Also, outcomes are compared with similar researches. Early prediction of diabetes is crucial to take necessary measures (i.e. changing eating habits, patient weight control etc.), to defer the emergence of diabetes and to reduce the death rate to some extent and ease medical care professionals’ decision-making in preventing and managing diabetes mellitus. The purpose of this study is the creation of a new hybrid feature selection approach combination of Correlation Matrix with Heatmap and Sequential forward selection (SFS) to reveal the most effective features in the detection of diabetes. A diabetes data set with 520 instances and seven features were studied with the application of the proposed hybrid feature selection approach. The evaluation of the selected optimal features was measured by applying Support Vector Machines(SVM), Random Forest(RF), and Artificial Neural Networks(ANN) classifiers. Five evaluation metrics, namely, Accuracy, F-measure, Precision, Recall, and AUC showed the best performance with ANN (99.1%), F-measure (99.1%), Precision (99.3%), Recall (99.1%), and AUC (99.2%). Our proposed hybrid feature selection model provided a more promising performance with ANN compared to other machine learning algorithms." @default.
- W4224990413 created "2022-04-28" @default.
- W4224990413 creator A5032108609 @default.
- W4224990413 creator A5049520472 @default.
- W4224990413 date "2022-04-30" @default.
- W4224990413 modified "2023-10-14" @default.
- W4224990413 title "Machine Learning based Early Prediction of Type 2 Diabetes: A New Hybrid Feature Selection Approach using Correlation Matrix with Heatmap and SFS" @default.
- W4224990413 cites W2012316318 @default.
- W4224990413 cites W2030010473 @default.
- W4224990413 cites W2082497819 @default.
- W4224990413 cites W2198899446 @default.
- W4224990413 cites W2569214105 @default.
- W4224990413 cites W2897093100 @default.
- W4224990413 cites W2970794795 @default.
- W4224990413 cites W2973871066 @default.
- W4224990413 cites W2981121978 @default.
- W4224990413 cites W2994617588 @default.
- W4224990413 cites W2997606798 @default.
- W4224990413 cites W3008233702 @default.
- W4224990413 cites W3039254823 @default.
- W4224990413 cites W3083610965 @default.
- W4224990413 cites W3094571545 @default.
- W4224990413 cites W3102252048 @default.
- W4224990413 cites W3108669571 @default.
- W4224990413 doi "https://doi.org/10.17694/bajece.973129" @default.
- W4224990413 hasPublicationYear "2022" @default.
- W4224990413 type Work @default.
- W4224990413 citedByCount "2" @default.
- W4224990413 countsByYear W42249904132023 @default.
- W4224990413 crossrefType "journal-article" @default.
- W4224990413 hasAuthorship W4224990413A5032108609 @default.
- W4224990413 hasAuthorship W4224990413A5049520472 @default.
- W4224990413 hasBestOaLocation W42249904131 @default.
- W4224990413 hasConcept C117220453 @default.
- W4224990413 hasConcept C119857082 @default.
- W4224990413 hasConcept C12267149 @default.
- W4224990413 hasConcept C124101348 @default.
- W4224990413 hasConcept C138885662 @default.
- W4224990413 hasConcept C148483581 @default.
- W4224990413 hasConcept C153180895 @default.
- W4224990413 hasConcept C154945302 @default.
- W4224990413 hasConcept C169258074 @default.
- W4224990413 hasConcept C2524010 @default.
- W4224990413 hasConcept C2776401178 @default.
- W4224990413 hasConcept C33923547 @default.
- W4224990413 hasConcept C41008148 @default.
- W4224990413 hasConcept C41895202 @default.
- W4224990413 hasConcept C50644808 @default.
- W4224990413 hasConcept C81917197 @default.
- W4224990413 hasConceptScore W4224990413C117220453 @default.
- W4224990413 hasConceptScore W4224990413C119857082 @default.
- W4224990413 hasConceptScore W4224990413C12267149 @default.
- W4224990413 hasConceptScore W4224990413C124101348 @default.
- W4224990413 hasConceptScore W4224990413C138885662 @default.
- W4224990413 hasConceptScore W4224990413C148483581 @default.
- W4224990413 hasConceptScore W4224990413C153180895 @default.
- W4224990413 hasConceptScore W4224990413C154945302 @default.
- W4224990413 hasConceptScore W4224990413C169258074 @default.
- W4224990413 hasConceptScore W4224990413C2524010 @default.
- W4224990413 hasConceptScore W4224990413C2776401178 @default.
- W4224990413 hasConceptScore W4224990413C33923547 @default.
- W4224990413 hasConceptScore W4224990413C41008148 @default.
- W4224990413 hasConceptScore W4224990413C41895202 @default.
- W4224990413 hasConceptScore W4224990413C50644808 @default.
- W4224990413 hasConceptScore W4224990413C81917197 @default.
- W4224990413 hasIssue "2" @default.
- W4224990413 hasLocation W42249904131 @default.
- W4224990413 hasLocation W42249904132 @default.
- W4224990413 hasOpenAccess W4224990413 @default.
- W4224990413 hasPrimaryLocation W42249904131 @default.
- W4224990413 hasRelatedWork W2985924212 @default.
- W4224990413 hasRelatedWork W3034132578 @default.
- W4224990413 hasRelatedWork W3122308606 @default.
- W4224990413 hasRelatedWork W3195168932 @default.
- W4224990413 hasRelatedWork W4288767684 @default.
- W4224990413 hasRelatedWork W4293525103 @default.
- W4224990413 hasRelatedWork W4321636153 @default.
- W4224990413 hasRelatedWork W4327511089 @default.
- W4224990413 hasRelatedWork W4377964522 @default.
- W4224990413 hasRelatedWork W2345184372 @default.
- W4224990413 hasVolume "10" @default.
- W4224990413 isParatext "false" @default.
- W4224990413 isRetracted "false" @default.
- W4224990413 workType "article" @default.