Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224990531> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4224990531 endingPage "117282" @default.
- W4224990531 startingPage "117282" @default.
- W4224990531 abstract "Female Genital Tuberculosis (FGTB) has a major impact on female fertility but it can be effectively treated on timely diagnosis. Early, objective and reliable diagnostics of FGTB causing infertility is a need of the hour in a populous country like India. As per our literature study, there is no computational method available for the same till date. Since, Transvaginal Ultrasound (TVUS) imaging is a non-invasive, primary and first line investigative technique; aim of this work is to develop an effective method for diagnosis of abnormal endometrial TB from TVUS images. TVUS images of female patients coming for infertility treatments to medical centers in India are collected under the supervision of medical expert. These images are preprocessed and used to train the proposed model. In this paper, a multi-scale and multi-direction Non-Subsampled Contourlet Transform (NSCT) based CNN model is proposed that integrates different levels of NSCT transformed features with different layers of a pre-trained CNN model. NSCT does spatial as well as spectral analysis and extracts significant features irrespective of orientation. The integration of these features makes the model more effective in discriminating normal and abnormal TB images. Further, the integrated model has less number of trainable parameters due to intrinsic multi-scale nature of NSCT. To test the effectiveness of the proposed NSCT-CNN model, traditional CNN with different pooling methods, Wavelet-CNN and Contourlet-CNN models were also implemented. The experimental results show that the proposed model has an improved efficacy over other related models implemented with an average testing accuracy of 88%, a sensitivity of 0.832 and F1-score of 0.869. Two tailed t-test conducted on the model performances are statistically significant at 95% confidence level for the data in hand. The model shows an improved efficiency over traditional model with 16.01% reduction in number of trainable parameters and 41.08 % reduction in training time." @default.
- W4224990531 created "2022-04-28" @default.
- W4224990531 creator A5005310746 @default.
- W4224990531 creator A5021852253 @default.
- W4224990531 creator A5028976780 @default.
- W4224990531 date "2022-09-01" @default.
- W4224990531 modified "2023-10-17" @default.
- W4224990531 title "Identification of endometrial tuberculosis in infertility using Non-Subsampled Contourlet based convolution neural network" @default.
- W4224990531 cites W2090042335 @default.
- W4224990531 cites W2103763210 @default.
- W4224990531 cites W2106002835 @default.
- W4224990531 cites W2116360511 @default.
- W4224990531 cites W2133135191 @default.
- W4224990531 cites W2346062110 @default.
- W4224990531 cites W2472971850 @default.
- W4224990531 cites W2546410677 @default.
- W4224990531 cites W2578388616 @default.
- W4224990531 cites W2592929672 @default.
- W4224990531 cites W2620915497 @default.
- W4224990531 cites W2805177060 @default.
- W4224990531 cites W2895232172 @default.
- W4224990531 cites W2895238724 @default.
- W4224990531 cites W2946092116 @default.
- W4224990531 cites W2962949934 @default.
- W4224990531 cites W2972561355 @default.
- W4224990531 cites W2972631344 @default.
- W4224990531 cites W2995567037 @default.
- W4224990531 cites W3048392635 @default.
- W4224990531 cites W3101294892 @default.
- W4224990531 cites W3104324122 @default.
- W4224990531 cites W3193559440 @default.
- W4224990531 doi "https://doi.org/10.1016/j.eswa.2022.117282" @default.
- W4224990531 hasPublicationYear "2022" @default.
- W4224990531 type Work @default.
- W4224990531 citedByCount "1" @default.
- W4224990531 countsByYear W42249905312022 @default.
- W4224990531 crossrefType "journal-article" @default.
- W4224990531 hasAuthorship W4224990531A5005310746 @default.
- W4224990531 hasAuthorship W4224990531A5021852253 @default.
- W4224990531 hasAuthorship W4224990531A5028976780 @default.
- W4224990531 hasConcept C153180895 @default.
- W4224990531 hasConcept C154945302 @default.
- W4224990531 hasConcept C196216189 @default.
- W4224990531 hasConcept C20479862 @default.
- W4224990531 hasConcept C2777688143 @default.
- W4224990531 hasConcept C2779234561 @default.
- W4224990531 hasConcept C41008148 @default.
- W4224990531 hasConcept C47432892 @default.
- W4224990531 hasConcept C54355233 @default.
- W4224990531 hasConcept C81363708 @default.
- W4224990531 hasConcept C86803240 @default.
- W4224990531 hasConceptScore W4224990531C153180895 @default.
- W4224990531 hasConceptScore W4224990531C154945302 @default.
- W4224990531 hasConceptScore W4224990531C196216189 @default.
- W4224990531 hasConceptScore W4224990531C20479862 @default.
- W4224990531 hasConceptScore W4224990531C2777688143 @default.
- W4224990531 hasConceptScore W4224990531C2779234561 @default.
- W4224990531 hasConceptScore W4224990531C41008148 @default.
- W4224990531 hasConceptScore W4224990531C47432892 @default.
- W4224990531 hasConceptScore W4224990531C54355233 @default.
- W4224990531 hasConceptScore W4224990531C81363708 @default.
- W4224990531 hasConceptScore W4224990531C86803240 @default.
- W4224990531 hasLocation W42249905311 @default.
- W4224990531 hasOpenAccess W4224990531 @default.
- W4224990531 hasPrimaryLocation W42249905311 @default.
- W4224990531 hasRelatedWork W1438163363 @default.
- W4224990531 hasRelatedWork W2049573171 @default.
- W4224990531 hasRelatedWork W2056137412 @default.
- W4224990531 hasRelatedWork W2100921133 @default.
- W4224990531 hasRelatedWork W2108790520 @default.
- W4224990531 hasRelatedWork W2378017270 @default.
- W4224990531 hasRelatedWork W2429158807 @default.
- W4224990531 hasRelatedWork W415651045 @default.
- W4224990531 hasRelatedWork W4248172957 @default.
- W4224990531 hasRelatedWork W3087569769 @default.
- W4224990531 hasVolume "202" @default.
- W4224990531 isParatext "false" @default.
- W4224990531 isRetracted "false" @default.
- W4224990531 workType "article" @default.