Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224990980> ?p ?o ?g. }
- W4224990980 endingPage "102715" @default.
- W4224990980 startingPage "102715" @default.
- W4224990980 abstract "To overcome the multifactorial complexity associated with the analysis and interpretation of the capillary electrophoresis results of forensic mixture samples, probabilistic genotyping methods have been developed and implemented as software, based on either qualitative or quantitative models. The former considers the electropherograms’ qualitative information (detected alleles), whilst the latter also takes into account the associated quantitative information (height of allele peaks). Both models then quantify the genetic evidence through the computation of a likelihood ratio (LR), comparing the probabilities of the observations given two alternative and mutually exclusive hypotheses.In this study, the results obtained through the qualitative software LRmix Studio (v.2.1.3), and the quantitative ones: STRmix™ (v.2.7) and EuroForMix (v.3.4.0), were compared considering real casework samples. A set of 156 irreversibly anonymized sample pairs (GeneMapper files), obtained under the scope of former cases of the Portuguese Scientific Police Laboratory, Judiciary Police (LPC-PJ), were independently analyzed using each software. Sample pairs were composed by (i) a mixture profile with either two or three estimated contributors, and (ii) a single contributor profile associated. In most cases, information on 21 short tandem repeat (STR) autosomal markers were considered, and the majority of the single-source samples could not be a priori excluded as belonging to a contributor to the paired mixture sample. This inter-software analysis shows the differences between the probative values obtained through different qualitative and quantitative tools, for the same input samples. LR values computed in this work by quantitative tools showed to be generally higher than those obtained by the qualitative. Although the differences between the LR values computed by both quantitative software showed to be much smaller, STRmix™ generated LRs are generally higher than those from EuroForMix. As expected, mixtures with three estimated contributors showed generally lower LR values than those obtained for mixtures with two estimated contributors.Different software products are based on different approaches and mathematical or statistical models, which necessarily result in the computation of different LR values. The understanding by the forensic experts of the models and their differences among available software is therefore crucial. The better the expert understands the methodology, the better he/she will be able to support and/or explain the results in court or any other area of scrutiny." @default.
- W4224990980 created "2022-04-28" @default.
- W4224990980 creator A5003785350 @default.
- W4224990980 creator A5005501198 @default.
- W4224990980 creator A5049889035 @default.
- W4224990980 creator A5056515514 @default.
- W4224990980 creator A5070792968 @default.
- W4224990980 creator A5073725489 @default.
- W4224990980 date "2022-07-01" @default.
- W4224990980 modified "2023-10-14" @default.
- W4224990980 title "Quantification of forensic genetic evidence: Comparison of results obtained by qualitative and quantitative software for real casework samples" @default.
- W4224990980 cites W1483068018 @default.
- W4224990980 cites W1711221922 @default.
- W4224990980 cites W1969710474 @default.
- W4224990980 cites W1975463828 @default.
- W4224990980 cites W1977345850 @default.
- W4224990980 cites W2004307198 @default.
- W4224990980 cites W2013827642 @default.
- W4224990980 cites W2014877745 @default.
- W4224990980 cites W2019930606 @default.
- W4224990980 cites W2029609095 @default.
- W4224990980 cites W2030369315 @default.
- W4224990980 cites W2037508176 @default.
- W4224990980 cites W2041756046 @default.
- W4224990980 cites W2058150396 @default.
- W4224990980 cites W2058558205 @default.
- W4224990980 cites W2068142170 @default.
- W4224990980 cites W2068942401 @default.
- W4224990980 cites W2070158494 @default.
- W4224990980 cites W2077375881 @default.
- W4224990980 cites W2082045431 @default.
- W4224990980 cites W2083765420 @default.
- W4224990980 cites W2090534961 @default.
- W4224990980 cites W2097665124 @default.
- W4224990980 cites W2114431119 @default.
- W4224990980 cites W2118813357 @default.
- W4224990980 cites W2120523528 @default.
- W4224990980 cites W2123665956 @default.
- W4224990980 cites W2128330525 @default.
- W4224990980 cites W2153500039 @default.
- W4224990980 cites W2158384452 @default.
- W4224990980 cites W2188530147 @default.
- W4224990980 cites W2308643575 @default.
- W4224990980 cites W2501943429 @default.
- W4224990980 cites W2511526948 @default.
- W4224990980 cites W2529963152 @default.
- W4224990980 cites W2553918854 @default.
- W4224990980 cites W2559472053 @default.
- W4224990980 cites W2604368675 @default.
- W4224990980 cites W2782979114 @default.
- W4224990980 cites W2803782348 @default.
- W4224990980 cites W2886336309 @default.
- W4224990980 cites W2886701778 @default.
- W4224990980 cites W2888877551 @default.
- W4224990980 cites W2900373467 @default.
- W4224990980 cites W2909731347 @default.
- W4224990980 cites W2959979886 @default.
- W4224990980 cites W2969525692 @default.
- W4224990980 cites W2973758486 @default.
- W4224990980 cites W3083001270 @default.
- W4224990980 cites W3199236318 @default.
- W4224990980 cites W3201104333 @default.
- W4224990980 cites W3204124974 @default.
- W4224990980 cites W4237083506 @default.
- W4224990980 doi "https://doi.org/10.1016/j.fsigen.2022.102715" @default.
- W4224990980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35490558" @default.
- W4224990980 hasPublicationYear "2022" @default.
- W4224990980 type Work @default.
- W4224990980 citedByCount "2" @default.
- W4224990980 countsByYear W42249909802023 @default.
- W4224990980 crossrefType "journal-article" @default.
- W4224990980 hasAuthorship W4224990980A5003785350 @default.
- W4224990980 hasAuthorship W4224990980A5005501198 @default.
- W4224990980 hasAuthorship W4224990980A5049889035 @default.
- W4224990980 hasAuthorship W4224990980A5056515514 @default.
- W4224990980 hasAuthorship W4224990980A5070792968 @default.
- W4224990980 hasAuthorship W4224990980A5073725489 @default.
- W4224990980 hasBestOaLocation W42249909801 @default.
- W4224990980 hasConcept C104317684 @default.
- W4224990980 hasConcept C105795698 @default.
- W4224990980 hasConcept C124101348 @default.
- W4224990980 hasConcept C135763542 @default.
- W4224990980 hasConcept C153911025 @default.
- W4224990980 hasConcept C177264268 @default.
- W4224990980 hasConcept C185592680 @default.
- W4224990980 hasConcept C198531522 @default.
- W4224990980 hasConcept C199360897 @default.
- W4224990980 hasConcept C2777904410 @default.
- W4224990980 hasConcept C2900643 @default.
- W4224990980 hasConcept C31467283 @default.
- W4224990980 hasConcept C33923547 @default.
- W4224990980 hasConcept C41008148 @default.
- W4224990980 hasConcept C43617362 @default.
- W4224990980 hasConcept C44995494 @default.
- W4224990980 hasConcept C54355233 @default.
- W4224990980 hasConcept C70721500 @default.
- W4224990980 hasConcept C86803240 @default.
- W4224990980 hasConceptScore W4224990980C104317684 @default.